Home
Class 12
MATHS
If the value of the sum 29(.^(30)C(0))+2...

If the value of the sum `29(.^(30)C_(0))+28(.^(30)C_(1))+27(.^(30)C_(2))+…….+1(.^(30)C_(28))+0.(.^(30)C_(29))-(.^(30)C_(30))` is equal to `K.2^(32)`, then the value of K is equal to

A

7

B

14

C

`(5)/(2)`

D

`(7)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = 29 \cdot \binom{30}{0} + 28 \cdot \binom{30}{1} + 27 \cdot \binom{30}{2} + \ldots + 1 \cdot \binom{30}{28} + 0 \cdot \binom{30}{29} - \binom{30}{30} \] We can rewrite this sum in a more manageable form. Notice that the coefficients (29, 28, ..., 1, 0) can be expressed as \(29 - k\) where \(k\) ranges from 0 to 29. Thus, we can express the sum as: \[ S = \sum_{k=0}^{29} (29 - k) \cdot \binom{30}{k} - \binom{30}{30} \] This can be split into two separate sums: \[ S = 29 \sum_{k=0}^{29} \binom{30}{k} - \sum_{k=0}^{29} k \cdot \binom{30}{k} - 1 \] Now, we know that: 1. The sum of the binomial coefficients is given by: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] For \(n = 30\): \[ \sum_{k=0}^{30} \binom{30}{k} = 2^{30} \] Thus, \[ \sum_{k=0}^{29} \binom{30}{k} = 2^{30} - \binom{30}{30} = 2^{30} - 1 \] 2. The sum involving \(k \cdot \binom{n}{k}\) can be evaluated using the identity: \[ \sum_{k=0}^{n} k \cdot \binom{n}{k} = n \cdot 2^{n-1} \] For \(n = 30\): \[ \sum_{k=0}^{30} k \cdot \binom{30}{k} = 30 \cdot 2^{29} \] Thus, \[ \sum_{k=0}^{29} k \cdot \binom{30}{k} = 30 \cdot 2^{29} - 30 \cdot \binom{30}{30} = 30 \cdot 2^{29} - 30 \] Now substituting back into our expression for \(S\): \[ S = 29(2^{30} - 1) - (30 \cdot 2^{29} - 30) - 1 \] Simplifying this gives: \[ S = 29 \cdot 2^{30} - 29 - 30 \cdot 2^{29} + 30 - 1 \] Combining like terms: \[ S = 29 \cdot 2^{30} - 30 \cdot 2^{29} + 0 \] Notice that \(30 \cdot 2^{29} = 15 \cdot 2^{30}\), thus: \[ S = 29 \cdot 2^{30} - 15 \cdot 2^{30} = (29 - 15) \cdot 2^{30} = 14 \cdot 2^{30} \] Now, we are given that \(S = K \cdot 2^{32}\). Therefore, we equate: \[ 14 \cdot 2^{30} = K \cdot 2^{32} \] Dividing both sides by \(2^{30}\): \[ 14 = K \cdot 2^2 \] Thus, \[ K = \frac{14}{4} = 3.5 \] So, the value of \(K\) is: \[ \boxed{3.5} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 90

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 92

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

({:(30),(0):})({:(30),(10):})-({:(30),(1):})({:(30),(11):}) + ... + ({:(30),(20):})({:(30),(30):}) is equal to

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is

(1+x)^(10)*(1+(1)/(x))^(20)is1^(30)C_(5)(2)^(10)C_(5)-3)^(20)C_(5)-4)^(30)

^5C_(1)+^(5)C_(2)+^(5)C_(3)+^(5)C_(4)+^(5)C_(5) is equal to 30 b.31c.32d.33

sum_(r=1)^(30) r (""^(30)C_(r))/(""^(30)C_(r-1))= ___________

the value of r for which .^(30)C_r.^(20)C_0+^(30)C_(r-1).^(20)C_1.....+^(30)C_0.^(20)C_r is maximum (A) 10 (B) 15 (C) 20 (D) 25

NTA MOCK TESTS-NTA JEE MOCK TEST 91-MATHEMATICS
  1. The probability of a problem being solved by 3 students independently ...

    Text Solution

    |

  2. Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+c...

    Text Solution

    |

  3. If the value of the sum 29(.^(30)C(0))+28(.^(30)C(1))+27(.^(30)C(2))+…...

    Text Solution

    |

  4. The value of the integral I=int((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3...

    Text Solution

    |

  5. Two circles with centres at A and B touch each other externally at T. ...

    Text Solution

    |

  6. Let a(n)=16,4,1,……….. be a geometric sequence. The value of Sigma(n=1)...

    Text Solution

    |

  7. A curve in the first quadrant is such that the slope of OP is twice th...

    Text Solution

    |

  8. There are six periods in each working day of the school. In how many ...

    Text Solution

    |

  9. If the maximum area bounded by y^(2)=4x and the line y=mx(AA m in [1, ...

    Text Solution

    |

  10. The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies ...

    Text Solution

    |

  11. The line through the points (m, -9) and (7, m) has slope m. Then, the ...

    Text Solution

    |

  12. All the values of m for which both roots of the equation x^2-...

    Text Solution

    |

  13. The locus of the midpoint of the chords of the hyperbola (x^(2))/(25)-...

    Text Solution

    |

  14. The real part of the complex number z satisfying |z-1-2i|le1 and havin...

    Text Solution

    |

  15. The mean and variance of 10 observations are found to be 10 and 5 resp...

    Text Solution

    |

  16. The value of lim(xrarrpi)(tan(picos^(2)x))/(sin^(2)(2x)) is equal to

    Text Solution

    |

  17. If f(x)=(x^(2)-[x^(2)])/(x^(2)-[x^(2)-2]) (where, [.] represents the g...

    Text Solution

    |

  18. If the angle between the plane x-3y+2z=1 and the line (x-1)/(2)=(y-1)/...

    Text Solution

    |

  19. If veca, vecb and vecc are three vectors such that 3veca+4vecb+6vecc=v...

    Text Solution

    |

  20. If the number of principal solutions of the equation tan(7pi cos x)=co...

    Text Solution

    |