Home
Class 12
MATHS
The value of the integral I=int((1)/(sqr...

The value of the integral `I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5))` is equal to

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(12)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dx}{1 + x^2 + x^3 + x^5}, \] we will use a substitution method and properties of definite integrals. Here are the steps: ### Step 1: Substitution Let \( t = \frac{1}{x} \). Then, we have \( x = \frac{1}{t} \) and \( dx = -\frac{1}{t^2} dt \). ### Step 2: Change the limits When \( x = \frac{1}{\sqrt{3}} \), \( t = \sqrt{3} \) and when \( x = \sqrt{3} \), \( t = \frac{1}{\sqrt{3}} \). Thus, the limits of integration change from \( \frac{1}{\sqrt{3}} \) to \( \sqrt{3} \) into \( \sqrt{3} \) to \( \frac{1}{\sqrt{3}} \). ### Step 3: Rewrite the integral Now, substituting into the integral, we get: \[ I = \int_{\sqrt{3}}^{\frac{1}{\sqrt{3}}} \frac{-\frac{1}{t^2} dt}{1 + \left(\frac{1}{t}\right)^2 + \left(\frac{1}{t}\right)^3 + \left(\frac{1}{t}\right)^5}. \] ### Step 4: Simplify the denominator The denominator becomes: \[ 1 + \frac{1}{t^2} + \frac{1}{t^3} + \frac{1}{t^5} = \frac{t^5 + t^3 + t^2 + 1}{t^5}. \] Thus, we can rewrite the integral as: \[ I = \int_{\sqrt{3}}^{\frac{1}{\sqrt{3}}} -\frac{t^5}{t^2(t^5 + t^3 + t^2 + 1)} dt = \int_{\sqrt{3}}^{\frac{1}{\sqrt{3}}} -\frac{t^3}{t^5 + t^3 + t^2 + 1} dt. \] ### Step 5: Change the limits back Changing the limits back gives: \[ I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{t^3}{t^5 + t^3 + t^2 + 1} dt. \] ### Step 6: Combine the integrals Now we have two expressions for \( I \): 1. \( I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dx}{1 + x^2 + x^3 + x^5} \) 2. \( I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{x^3}{1 + x^2 + x^3 + x^5} dx \) Adding these two integrals gives: \[ 2I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1 + x^3}{1 + x^2 + x^3 + x^5} dx. \] ### Step 7: Simplify the denominator The denominator can be factored as: \[ 1 + x^2 + x^3 + x^5 = (1 + x^3)(1 + x^2). \] Thus, \[ 2I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1 + x^3}{(1 + x^3)(1 + x^2)} dx = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{1 + x^2} dx. \] ### Step 8: Evaluate the integral The integral \( \int \frac{1}{1 + x^2} dx \) is \( \tan^{-1}(x) \). Therefore: \[ 2I = \left[ \tan^{-1}(x) \right]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} = \tan^{-1}(\sqrt{3}) - \tan^{-1}\left(\frac{1}{\sqrt{3}}\right). \] ### Step 9: Calculate the values We know that: \[ \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \quad \text{and} \quad \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}. \] Thus, \[ 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}. \] ### Step 10: Solve for \( I \) Finally, we find \( I \): \[ I = \frac{\pi}{12}. \] ### Final Answer The value of the integral is \[ \boxed{\frac{\pi}{12}}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 90

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 92

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

The value of the integral int_(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1)) is

The value of the integral int_(0)^(1) (sqrt(x)dx)/((1+x) (1+3x ) (3+x)) is :

int_(1)^(sqrt(3))(dx)/(1+x^(2)) equals

The value of I=int_(-sqrt(3)/2)^(sqrt(3)/2)(dx)/((1-x)sqrt(1-x^(2))) is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 91-MATHEMATICS
  1. Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+c...

    Text Solution

    |

  2. If the value of the sum 29(.^(30)C(0))+28(.^(30)C(1))+27(.^(30)C(2))+…...

    Text Solution

    |

  3. The value of the integral I=int((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3...

    Text Solution

    |

  4. Two circles with centres at A and B touch each other externally at T. ...

    Text Solution

    |

  5. Let a(n)=16,4,1,……….. be a geometric sequence. The value of Sigma(n=1)...

    Text Solution

    |

  6. A curve in the first quadrant is such that the slope of OP is twice th...

    Text Solution

    |

  7. There are six periods in each working day of the school. In how many ...

    Text Solution

    |

  8. If the maximum area bounded by y^(2)=4x and the line y=mx(AA m in [1, ...

    Text Solution

    |

  9. The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies ...

    Text Solution

    |

  10. The line through the points (m, -9) and (7, m) has slope m. Then, the ...

    Text Solution

    |

  11. All the values of m for which both roots of the equation x^2-...

    Text Solution

    |

  12. The locus of the midpoint of the chords of the hyperbola (x^(2))/(25)-...

    Text Solution

    |

  13. The real part of the complex number z satisfying |z-1-2i|le1 and havin...

    Text Solution

    |

  14. The mean and variance of 10 observations are found to be 10 and 5 resp...

    Text Solution

    |

  15. The value of lim(xrarrpi)(tan(picos^(2)x))/(sin^(2)(2x)) is equal to

    Text Solution

    |

  16. If f(x)=(x^(2)-[x^(2)])/(x^(2)-[x^(2)-2]) (where, [.] represents the g...

    Text Solution

    |

  17. If the angle between the plane x-3y+2z=1 and the line (x-1)/(2)=(y-1)/...

    Text Solution

    |

  18. If veca, vecb and vecc are three vectors such that 3veca+4vecb+6vecc=v...

    Text Solution

    |

  19. If the number of principal solutions of the equation tan(7pi cos x)=co...

    Text Solution

    |

  20. The numberof real values of x that satisfies the equation x^(4)+4x^(3)...

    Text Solution

    |