Home
Class 12
MATHS
If veca, vecb and vecc are three vectors...

If `veca, vecb and vecc` are three vectors such that `3veca+4vecb+6vecc=vec0, |veca|=3, |vecb|=3 and |vecc|=4`, then the value of `-864((veca.vecb+vecb.vecc+vecc.veca)/(6))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(-864 \left( \frac{\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}}{6} \right)\) given the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) satisfy the equation \(3\vec{a} + 4\vec{b} + 6\vec{c} = \vec{0}\) and their magnitudes \(|\vec{a}| = 3\), \(|\vec{b}| = 3\), and \(|\vec{c}| = 4\). ### Step 1: Rearranging the Vector Equation From the equation \(3\vec{a} + 4\vec{b} + 6\vec{c} = \vec{0}\), we can express one vector in terms of the others: \[ 3\vec{a} + 4\vec{b} = -6\vec{c} \] ### Step 2: Squaring Both Sides Now, we square both sides: \[ (3\vec{a} + 4\vec{b}) \cdot (3\vec{a} + 4\vec{b}) = (-6\vec{c}) \cdot (-6\vec{c}) \] This gives us: \[ 9\vec{a} \cdot \vec{a} + 24\vec{a} \cdot \vec{b} + 16\vec{b} \cdot \vec{b} = 36\vec{c} \cdot \vec{c} \] ### Step 3: Substituting Magnitudes We substitute the magnitudes: \[ 9|\vec{a}|^2 + 24\vec{a} \cdot \vec{b} + 16|\vec{b}|^2 = 36|\vec{c}|^2 \] Substituting \(|\vec{a}| = 3\), \(|\vec{b}| = 3\), and \(|\vec{c}| = 4\): \[ 9(3^2) + 24\vec{a} \cdot \vec{b} + 16(3^2) = 36(4^2) \] This simplifies to: \[ 81 + 24\vec{a} \cdot \vec{b} + 144 = 576 \] Combining terms: \[ 225 + 24\vec{a} \cdot \vec{b} = 576 \] Thus: \[ 24\vec{a} \cdot \vec{b} = 576 - 225 = 351 \] So: \[ \vec{a} \cdot \vec{b} = \frac{351}{24} = \frac{117}{8} \] ### Step 4: Finding \(\vec{b} \cdot \vec{c}\) Using a similar approach, we can express \(4\vec{b} + 6\vec{c} = -3\vec{a}\) and square it: \[ (4\vec{b} + 6\vec{c}) \cdot (4\vec{b} + 6\vec{c}) = (-3\vec{a}) \cdot (-3\vec{a}) \] This gives: \[ 16\vec{b} \cdot \vec{b} + 48\vec{b} \cdot \vec{c} + 36\vec{c} \cdot \vec{c} = 9\vec{a} \cdot \vec{a} \] Substituting magnitudes: \[ 16(3^2) + 48\vec{b} \cdot \vec{c} + 36(4^2) = 9(3^2) \] This simplifies to: \[ 144 + 48\vec{b} \cdot \vec{c} + 576 = 81 \] Combining terms: \[ 720 + 48\vec{b} \cdot \vec{c} = 81 \] Thus: \[ 48\vec{b} \cdot \vec{c} = 81 - 720 = -639 \] So: \[ \vec{b} \cdot \vec{c} = \frac{-639}{48} \] ### Step 5: Finding \(\vec{c} \cdot \vec{a}\) Using \(3\vec{a} + 6\vec{c} = -4\vec{b}\) and squaring: \[ (3\vec{a} + 6\vec{c}) \cdot (3\vec{a} + 6\vec{c}) = (-4\vec{b}) \cdot (-4\vec{b}) \] This gives: \[ 9\vec{a} \cdot \vec{a} + 36\vec{a} \cdot \vec{c} + 36\vec{c} \cdot \vec{c} = 16\vec{b} \cdot \vec{b} \] Substituting magnitudes: \[ 9(3^2) + 36\vec{a} \cdot \vec{c} + 36(4^2) = 16(3^2) \] This simplifies to: \[ 81 + 36\vec{a} \cdot \vec{c} + 576 = 144 \] Combining terms: \[ 657 + 36\vec{a} \cdot \vec{c} = 144 \] Thus: \[ 36\vec{a} \cdot \vec{c} = 144 - 657 = -513 \] So: \[ \vec{a} \cdot \vec{c} = \frac{-513}{36} \] ### Step 6: Summing the Dot Products Now we sum: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \frac{117}{8} + \frac{-639}{48} + \frac{-513}{36} \] Finding a common denominator (which is 144): \[ \frac{117 \times 18}{144} + \frac{-639 \times 3}{144} + \frac{-513 \times 4}{144} \] Calculating: \[ \frac{2106 - 1917 - 2052}{144} = \frac{-1863}{144} \] ### Step 7: Final Calculation Now we substitute back into the original expression: \[ -864 \left( \frac{-1863/144}{6} \right) = -864 \left( \frac{-1863}{864} \right) = 1863 \] ### Final Answer Thus, the value is: \[ \boxed{1863} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 90

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 92

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

For three vectors veca, vecb and vecc , If |veca|=2, |vecb|=1, vecaxxvecb=vecc and vecbxxvecc=veca , then the value of [(veca+vecb,vecb+vecc,vecc+veca)] is equal to

If veca,vecb,vecc are three vectors such that |veca|=2,|vecb|=4,|vecc|=4,vecb.vecc=0,vecb.veca=vecc.veca , then find the value of |veca+veca-vecc|

NTA MOCK TESTS-NTA JEE MOCK TEST 91-MATHEMATICS
  1. The value of the integral I=int((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3...

    Text Solution

    |

  2. Two circles with centres at A and B touch each other externally at T. ...

    Text Solution

    |

  3. Let a(n)=16,4,1,……….. be a geometric sequence. The value of Sigma(n=1)...

    Text Solution

    |

  4. A curve in the first quadrant is such that the slope of OP is twice th...

    Text Solution

    |

  5. There are six periods in each working day of the school. In how many ...

    Text Solution

    |

  6. If the maximum area bounded by y^(2)=4x and the line y=mx(AA m in [1, ...

    Text Solution

    |

  7. The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies ...

    Text Solution

    |

  8. The line through the points (m, -9) and (7, m) has slope m. Then, the ...

    Text Solution

    |

  9. All the values of m for which both roots of the equation x^2-...

    Text Solution

    |

  10. The locus of the midpoint of the chords of the hyperbola (x^(2))/(25)-...

    Text Solution

    |

  11. The real part of the complex number z satisfying |z-1-2i|le1 and havin...

    Text Solution

    |

  12. The mean and variance of 10 observations are found to be 10 and 5 resp...

    Text Solution

    |

  13. The value of lim(xrarrpi)(tan(picos^(2)x))/(sin^(2)(2x)) is equal to

    Text Solution

    |

  14. If f(x)=(x^(2)-[x^(2)])/(x^(2)-[x^(2)-2]) (where, [.] represents the g...

    Text Solution

    |

  15. If the angle between the plane x-3y+2z=1 and the line (x-1)/(2)=(y-1)/...

    Text Solution

    |

  16. If veca, vecb and vecc are three vectors such that 3veca+4vecb+6vecc=v...

    Text Solution

    |

  17. If the number of principal solutions of the equation tan(7pi cos x)=co...

    Text Solution

    |

  18. The numberof real values of x that satisfies the equation x^(4)+4x^(3)...

    Text Solution

    |

  19. If the normals of the parabola y^(2)=4x drawn at the end points of its...

    Text Solution

    |

  20. A man is walking towards a vertical pillar in a straight path at a uni...

    Text Solution

    |