Home
Class 12
MATHS
A data consists of n observations : x(1)...

A data consists of n observations : `x_(1), x_(2),……, x_(n)`. If `Sigma_(i=1)^(n)(x_(i)+1)^(2)=11n and Sigma_(i=1)^(n)(x_(i)-1)^(2)=7n`, then the variance of this data is

A

5

B

8

C

6

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the variance of the given data based on the provided summation equations. Let's break it down step by step. ### Step 1: Understand the Given Equations We have two equations: 1. \(\sum_{i=1}^{n} (x_i + 1)^2 = 11n\) 2. \(\sum_{i=1}^{n} (x_i - 1)^2 = 7n\) ### Step 2: Expand the Equations We will expand both equations using the formula \((a \pm b)^2 = a^2 \pm 2ab + b^2\). 1. For the first equation: \[ \sum_{i=1}^{n} (x_i + 1)^2 = \sum_{i=1}^{n} (x_i^2 + 2x_i + 1) = \sum_{i=1}^{n} x_i^2 + 2\sum_{i=1}^{n} x_i + n \] Therefore, we can write: \[ \sum_{i=1}^{n} x_i^2 + 2\sum_{i=1}^{n} x_i + n = 11n \] Simplifying gives: \[ \sum_{i=1}^{n} x_i^2 + 2\sum_{i=1}^{n} x_i = 10n \quad \text{(Equation 1)} \] 2. For the second equation: \[ \sum_{i=1}^{n} (x_i - 1)^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i + 1) = \sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} x_i + n \] Therefore, we can write: \[ \sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} x_i + n = 7n \] Simplifying gives: \[ \sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} x_i = 6n \quad \text{(Equation 2)} \] ### Step 3: Subtract the Two Equations Now we will subtract Equation 2 from Equation 1: \[ \left(\sum_{i=1}^{n} x_i^2 + 2\sum_{i=1}^{n} x_i\right) - \left(\sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} x_i\right) = 10n - 6n \] This simplifies to: \[ 4\sum_{i=1}^{n} x_i = 4n \] Dividing both sides by 4 gives: \[ \sum_{i=1}^{n} x_i = n \] ### Step 4: Calculate the Mean The mean \(\bar{x}\) is given by: \[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{n}{n} = 1 \] ### Step 5: Substitute Mean into Equation for Variance The variance \(Var(X)\) is given by: \[ Var(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n} \] Using the relationship: \[ \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - 1)^2 \] From Equation 2, we know: \[ \sum_{i=1}^{n} (x_i - 1)^2 = 7n \] Thus: \[ Var(X) = \frac{7n}{n} = 7 \] ### Final Answer The variance of the data is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 91

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 93

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

In a group of data, there are n observations, x,x_(2), ..., x_(n)." If "sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n , the standard deviation of the data is

For a sample size of 10 observations x_(1), x_(2),...... x_(10) , if Sigma_(i=1)^(10)(x_(i)-5)^(2)=350 and Sigma_(i=1)^(10)(x_(i)-2)=60 , then the variance of x_(i) is

The standard deviation of n observations x_(1),x_(2),......,x_(n) is 2. If sum_(i=1)^(n)x_(i)=20 and sum_(i=1)^(n)x_(i)^(2)=100 then n is

If sum_(i=1)^(n)(x_(i)-2)=110, sum_(i=1)^(n)(x_(i)-5)=20 , then what is the mean?

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If sum_(i=1)^n (x_i -a) =n and sum_(i=1)^n (x_i - a)^2 =na then the standard deviation of variate x_i

NTA MOCK TESTS-NTA JEE MOCK TEST 92-MATHEMATICS
  1. Consider the intergral A=int(0)^(1)(e^(x)-1)/(x)dx and B=int(0)^(1)(x)...

    Text Solution

    |

  2. If a, b in R satisfy the equation a^(2)+4b^(2)-4=0, then the minimum v...

    Text Solution

    |

  3. The equation of the curve satisfying the differential equation x^(2)dy...

    Text Solution

    |

  4. The domain of f(x)=(x)/(16-x^(2))+log(2)(x^(3)-2x) is

    Text Solution

    |

  5. Let p.q and r be three statements, then (~prarrq)rarr r is equivalent ...

    Text Solution

    |

  6. The value of lim(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (w...

    Text Solution

    |

  7. A data consists of n observations : x(1), x(2),……, x(n). If Sigma(i=1)...

    Text Solution

    |

  8. Which of the following is a correct statement ?

    Text Solution

    |

  9. The term independent of x in the expansion of (x-1/x)^4(x+1/x)^3 i...

    Text Solution

    |

  10. The number of ways in which four different toys and five indistinguish...

    Text Solution

    |

  11. If p^("th"), 2p^("th") and 4p^("th") terms of an arithmetic progressio...

    Text Solution

    |

  12. The position vectors of vertices of triangle ABC are (1, -2), (-7,6) a...

    Text Solution

    |

  13. The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch eac...

    Text Solution

    |

  14. The area (in sq. units) bounded by the curve y=|x-pi|+|x-e|, the ordin...

    Text Solution

    |

  15. If z and w are complex numbers satisfying barz+ibarw=0 and amp(zw)=pi,...

    Text Solution

    |

  16. If |(2+x,x,x^(2)),(x,2+x,x^(2)),(x^(2),x,2+x)|=(1)/(6)(x-a)(x-b)(x-c)(...

    Text Solution

    |

  17. If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (wher...

    Text Solution

    |

  18. If f:R rarr [(pi)/(3), pi) defined by f(x)=cos^(-1)((lambda-x^(2))/(x^...

    Text Solution

    |

  19. The number of solutions of the equation tan x+secx=2 cos x lying in th...

    Text Solution

    |

  20. Tangents are drawn from any point on the directrix of y^(2)=16x to the...

    Text Solution

    |