Home
Class 12
MATHS
If |(2+x,x,x^(2)),(x,2+x,x^(2)),(x^(2),x...

If `|(2+x,x,x^(2)),(x,2+x,x^(2)),(x^(2),x,2+x)|=(1)/(6)(x-a)(x-b)(x-c)(x-d)` an identity in x where a, b, c, d are independent of x, then the value of `(13)/(25)abcd` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant and set it equal to the given expression. Let's break it down step by step. ### Step 1: Write down the determinant We have the determinant: \[ D = \begin{vmatrix} 2+x & x & x^2 \\ x & 2+x & x^2 \\ x^2 & x & 2+x \end{vmatrix} \] ### Step 2: Calculate the determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ D = a(ei-fh) - b(di-fg) + c(dh-eg) \] where \( a, b, c, d, e, f, g, h, i \) are the elements of the matrix. Substituting the elements from our matrix: \[ D = (2+x)((2+x)(2+x) - x^2) - x(x^2(2+x) - x^2) + x^2(x^2x - x(2+x)) \] Calculating each term: 1. The first term: \[ (2+x)((2+x)(2+x) - x^2) = (2+x)(4 + 4x + x^2 - x^2) = (2+x)(4 + 4x) = 8 + 8x + 4x + 4x^2 = 8 + 12x + 4x^2 \] 2. The second term: \[ -x(x^2(2+x) - x^2) = -x(x^2(2+x-1)) = -x(x^2(1+x)) = -x^3 - x^4 \] 3. The third term: \[ x^2(x^2x - x(2+x)) = x^2(x^3 - 2x - x^2) = x^2(x^3 - x^2 - 2x) = x^5 - x^4 - 2x^3 \] Combining all the terms: \[ D = (8 + 12x + 4x^2) - (x^3 + x^4) + (x^5 - x^4 - 2x^3) \] \[ D = 8 + 12x + 4x^2 - x^4 - 3x^3 + x^5 \] ### Step 3: Set the determinant equal to the given expression We know: \[ D = \frac{1}{6}(x-a)(x-b)(x-c)(x-d) \] This means: \[ x^5 - 3x^3 - x^4 + 4x^2 + 8 = \frac{1}{6}(x^4 - (a+b+c+d)x^3 + (ab+ac+ad+bc+bd+cd)x^2 - (abc+abd+acd+bcd)x + abcd) \] ### Step 4: Compare coefficients From the equation, we can compare coefficients of \(x^5, x^4, x^3, x^2, x^1, x^0\) on both sides to find \(a, b, c, d\). 1. Coefficient of \(x^5\): \(1 = \frac{1}{6}\) (no \(x^5\) term on RHS) 2. Coefficient of \(x^4\): \(-1 = -\frac{1}{6}(a+b+c+d)\) \[ a+b+c+d = 6 \] 3. Coefficient of \(x^3\): \(-3 = \frac{1}{6}(ab+ac+ad+bc+bd+cd)\) \[ ab+ac+ad+bc+bd+cd = -18 \] 4. Coefficient of \(x^2\): \(4 = \frac{1}{6}(-abc-abd-acd-bcd)\) \[ abc+abd+acd+bcd = -24 \] 5. Coefficient of \(x^0\): \(8 = \frac{1}{6}(abcd)\) \[ abcd = 48 \] ### Step 5: Calculate \( \frac{13}{25} abcd \) Now we can find: \[ \frac{13}{25} abcd = \frac{13}{25} \times 48 = \frac{624}{25} = 24.96 \] ### Final Answer Thus, the value of \( \frac{13}{25} abcd \) is: \[ \boxed{24.96} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 91

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 93

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let |(1 +x,x,x^(2)),(x,1 +x,x^(2)),(x^(2),x,1 +x)| = ax^(5) + bx^(4) + cx^(3) + dx^(2) + lamdax +mu be an identity in x, where a, b, c, lamda, mu are independent of x. Then, the value of lamda is

Let |x^2+3xx-1x+3x+1-2xx-4x-3x+4 3x|=a x^4+b x^3+c x^2+e be an identity in x , where a , b , c , d , e are independent of xdot Then the value of e is 4 (b) 0 (c) 1 (d) none of these

If ((x-a)(x-b))/((x-c)(x-d)^(2))>=0; where a>b>c>=d>0, then x in

If x^(2)+(1)/(x^(2))=102, then x-(1)/(x)=8( b) 10 (c) 12 (d) 13

Let A= [{:(,3x^(2)),(,1),(,6x):}], B=[a,b,c] and C=[{:(,(x+2)^(2),5x^(2),2x),(,5x^(2),2x,(x+1)^(2)),(,2x,(x+2)^(2),5x^(2))]:} where, a,b c and x in R , Given that tr (AB)=tr(C ). Then the value of (a+b+c)

If (x+(1)/(x))=3, then (x^(2)+(1)/(x^(2)))=?( a )7( b) 9(c)10(d)27

If x+(1)/(x)=2, then x^(3)+(1)/(x^(3))=64(b)14(c)8(d)2

If range of f (x)= ((ln x) (ln x ^(2))+ln x ^(3)+3)/(ln ^(2) x+ln x ^(2)+2) can be expressed as [ (a)/(b),(c )/(d)] where a,b,c and d are prime numbers (not nacessarily distinct) then find the value of ((a+b+c+d))/(2).

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

NTA MOCK TESTS-NTA JEE MOCK TEST 92-MATHEMATICS
  1. Consider the intergral A=int(0)^(1)(e^(x)-1)/(x)dx and B=int(0)^(1)(x)...

    Text Solution

    |

  2. If a, b in R satisfy the equation a^(2)+4b^(2)-4=0, then the minimum v...

    Text Solution

    |

  3. The equation of the curve satisfying the differential equation x^(2)dy...

    Text Solution

    |

  4. The domain of f(x)=(x)/(16-x^(2))+log(2)(x^(3)-2x) is

    Text Solution

    |

  5. Let p.q and r be three statements, then (~prarrq)rarr r is equivalent ...

    Text Solution

    |

  6. The value of lim(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (w...

    Text Solution

    |

  7. A data consists of n observations : x(1), x(2),……, x(n). If Sigma(i=1)...

    Text Solution

    |

  8. Which of the following is a correct statement ?

    Text Solution

    |

  9. The term independent of x in the expansion of (x-1/x)^4(x+1/x)^3 i...

    Text Solution

    |

  10. The number of ways in which four different toys and five indistinguish...

    Text Solution

    |

  11. If p^("th"), 2p^("th") and 4p^("th") terms of an arithmetic progressio...

    Text Solution

    |

  12. The position vectors of vertices of triangle ABC are (1, -2), (-7,6) a...

    Text Solution

    |

  13. The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch eac...

    Text Solution

    |

  14. The area (in sq. units) bounded by the curve y=|x-pi|+|x-e|, the ordin...

    Text Solution

    |

  15. If z and w are complex numbers satisfying barz+ibarw=0 and amp(zw)=pi,...

    Text Solution

    |

  16. If |(2+x,x,x^(2)),(x,2+x,x^(2)),(x^(2),x,2+x)|=(1)/(6)(x-a)(x-b)(x-c)(...

    Text Solution

    |

  17. If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (wher...

    Text Solution

    |

  18. If f:R rarr [(pi)/(3), pi) defined by f(x)=cos^(-1)((lambda-x^(2))/(x^...

    Text Solution

    |

  19. The number of solutions of the equation tan x+secx=2 cos x lying in th...

    Text Solution

    |

  20. Tangents are drawn from any point on the directrix of y^(2)=16x to the...

    Text Solution

    |