Home
Class 12
MATHS
If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1...

If `I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c` (where, c is the constant of integration) and `f(0)=g(0)=1`,then the value of `f(1).g(1)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the functions \( f(x) \) and \( g(x) \) from the given integral expression and then evaluate \( f(1) \cdot g(1) \). ### Step-by-Step Solution: 1. **Identify the Integral**: We start with the integral given: \[ I = \int \frac{x^3 - 1}{x^5 + x^4 + x + 1} \, dx \] This is expressed as: \[ I = \frac{1}{4} \ln(f(x)) - \ln(g(x)) + C \] 2. **Simplify the Integral**: We can rewrite the integrand: \[ \frac{x^3 - 1}{x^5 + x^4 + x + 1} = \frac{x^3 - 1}{(x^4 + 1)(x + 1)} \] This can be separated into two parts: \[ I = \int \left( \frac{x^3}{x^5 + x^4 + x + 1} - \frac{1}{x + 1} \right) \, dx \] 3. **Substitution**: Let \( t = x^4 + 1 \). Then, \( dt = 4x^3 \, dx \) or \( dx = \frac{dt}{4x^3} \). The integral becomes: \[ I_1 = \int \frac{x^3}{t} \cdot \frac{dt}{4x^3} = \frac{1}{4} \int \frac{1}{t} \, dt = \frac{1}{4} \ln |t| + C = \frac{1}{4} \ln |x^4 + 1| + C \] 4. **Integrate the Second Part**: The second integral: \[ I_2 = \int \frac{1}{x + 1} \, dx = \ln |x + 1| + C \] 5. **Combine Results**: Combining both parts, we have: \[ I = \frac{1}{4} \ln |x^4 + 1| - \ln |x + 1| + C \] 6. **Identify \( f(x) \) and \( g(x) \)**: From the expression: \[ \frac{1}{4} \ln(f(x)) - \ln(g(x)) = \frac{1}{4} \ln |x^4 + 1| - \ln |x + 1| \] We can equate: \[ f(x) = x^4 + 1 \quad \text{and} \quad g(x) = x + 1 \] 7. **Evaluate \( f(0) \) and \( g(0) \)**: Check the initial conditions: \[ f(0) = 0^4 + 1 = 1 \quad \text{and} \quad g(0) = 0 + 1 = 1 \] Both conditions are satisfied. 8. **Calculate \( f(1) \) and \( g(1) \)**: Now we compute: \[ f(1) = 1^4 + 1 = 2 \quad \text{and} \quad g(1) = 1 + 1 = 2 \] 9. **Find \( f(1) \cdot g(1) \)**: Finally, we find: \[ f(1) \cdot g(1) = 2 \cdot 2 = 4 \] ### Final Answer: The value of \( f(1) \cdot g(1) \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 91

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 93

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

If int(x(sin x-cos x)-sin x)/(e^(x)+(sin x)x)dx=-ln(f(x))+g(x)+C where C is the constant of integration and f(x) is positive then f(x)+g(x) has the value equal to

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

If the integral I= ∫e^(5ln x)(x^(6)+1)^(-1)dx=ln (x^(6)+1)+C , (where C is the constant of integration) then the value of (1)/(lambda) is

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

If I=int(dx)/(root(3)(x^((5)/(2))(1+x)^((7)/(2))))=kf(x)+c , where c is the integration constant and f(1)=(1)/(2^((1)/(6))) , then the value of f(2) is

If int (cos x-sin x + 1-x)/(e^(x)+sin x+x)dx=ln{f(x)}+g(x)+C , where C is the constant of integrating and f(x) is positive, then (f(x)+g(x))/(e^(x)+sin x) is equal to .......... .

NTA MOCK TESTS-NTA JEE MOCK TEST 92-MATHEMATICS
  1. Consider the intergral A=int(0)^(1)(e^(x)-1)/(x)dx and B=int(0)^(1)(x)...

    Text Solution

    |

  2. If a, b in R satisfy the equation a^(2)+4b^(2)-4=0, then the minimum v...

    Text Solution

    |

  3. The equation of the curve satisfying the differential equation x^(2)dy...

    Text Solution

    |

  4. The domain of f(x)=(x)/(16-x^(2))+log(2)(x^(3)-2x) is

    Text Solution

    |

  5. Let p.q and r be three statements, then (~prarrq)rarr r is equivalent ...

    Text Solution

    |

  6. The value of lim(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (w...

    Text Solution

    |

  7. A data consists of n observations : x(1), x(2),……, x(n). If Sigma(i=1)...

    Text Solution

    |

  8. Which of the following is a correct statement ?

    Text Solution

    |

  9. The term independent of x in the expansion of (x-1/x)^4(x+1/x)^3 i...

    Text Solution

    |

  10. The number of ways in which four different toys and five indistinguish...

    Text Solution

    |

  11. If p^("th"), 2p^("th") and 4p^("th") terms of an arithmetic progressio...

    Text Solution

    |

  12. The position vectors of vertices of triangle ABC are (1, -2), (-7,6) a...

    Text Solution

    |

  13. The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch eac...

    Text Solution

    |

  14. The area (in sq. units) bounded by the curve y=|x-pi|+|x-e|, the ordin...

    Text Solution

    |

  15. If z and w are complex numbers satisfying barz+ibarw=0 and amp(zw)=pi,...

    Text Solution

    |

  16. If |(2+x,x,x^(2)),(x,2+x,x^(2)),(x^(2),x,2+x)|=(1)/(6)(x-a)(x-b)(x-c)(...

    Text Solution

    |

  17. If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (wher...

    Text Solution

    |

  18. If f:R rarr [(pi)/(3), pi) defined by f(x)=cos^(-1)((lambda-x^(2))/(x^...

    Text Solution

    |

  19. The number of solutions of the equation tan x+secx=2 cos x lying in th...

    Text Solution

    |

  20. Tangents are drawn from any point on the directrix of y^(2)=16x to the...

    Text Solution

    |