Home
Class 12
MATHS
If veca=2hati-3hatj+4hatk, veca.vecb=2 a...

If `veca=2hati-3hatj+4hatk, veca.vecb=2` and `veca xx vecb=hati+2hatj+hatk`, then `vecb` is equal to

A

`15hati-8hatj+hatk`

B

`(1)/(29)(15hati-8hatj+hatk)`

C

`(1)/(5)(2hati+hatj+hatk)`

D

`2hati+hatj+hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{b}\) given the conditions involving the dot and cross products of vectors \(\vec{a}\) and \(\vec{b}\). Given: \[ \vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k} \] \[ \vec{a} \cdot \vec{b} = 2 \] \[ \vec{a} \times \vec{b} = \hat{i} + 2\hat{j} + \hat{k} \] Let’s assume: \[ \vec{b} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 1: Use the dot product condition The dot product \(\vec{a} \cdot \vec{b}\) is given by: \[ \vec{a} \cdot \vec{b} = (2\hat{i} - 3\hat{j} + 4\hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 2x - 3y + 4z \] Setting this equal to 2, we have: \[ 2x - 3y + 4z = 2 \quad \text{(Equation 1)} \] ### Step 2: Use the cross product condition The cross product \(\vec{a} \times \vec{b}\) can be calculated using the determinant: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 4 \\ x & y & z \end{vmatrix} \] Calculating this determinant, we find: \[ \vec{a} \times \vec{b} = \hat{i}((-3)z - 4y) - \hat{j}(2z - 4x) + \hat{k}(2y + 3x) \] Setting this equal to \(\hat{i} + 2\hat{j} + \hat{k}\), we get the following equations: 1. \(-3z - 4y = 1\) (Equation 2) 2. \(-2z + 4x = -2\) (Equation 3) 3. \(2y + 3x = 1\) (Equation 4) ### Step 3: Solve the equations From Equation 3: \[ -2z + 4x = -2 \implies 4x = 2z - 2 \implies z = 2x + 1 \quad \text{(Equation 5)} \] Substituting Equation 5 into Equation 2: \[ -3(2x + 1) - 4y = 1 \implies -6x - 3 - 4y = 1 \implies -6x - 4y = 4 \implies 6x + 4y = -4 \quad \text{(Equation 6)} \] Now, we can simplify Equation 6: \[ 3x + 2y = -2 \quad \text{(Equation 7)} \] ### Step 4: Solve Equations 4 and 7 simultaneously From Equation 4: \[ 2y + 3x = 1 \quad \text{(Equation 4)} \] Now we can solve Equations 4 and 7: 1. \(3x + 2y = -2\) (Equation 7) 2. \(2y + 3x = 1\) (Equation 4) Subtract Equation 7 from Equation 4: \[ (2y + 3x) - (3x + 2y) = 1 - (-2) \implies 0 = 3 \quad \text{(This gives us no new information)} \] ### Step 5: Solve for \(x\) and \(y\) From Equation 7: \[ 2y = -2 - 3x \implies y = -1 - \frac{3}{2}x \quad \text{(Equation 8)} \] Substituting Equation 8 into Equation 4: \[ 2(-1 - \frac{3}{2}x) + 3x = 1 \implies -2 - 3x + 3x = 1 \implies -2 = 1 \quad \text{(Again, no new information)} \] ### Step 6: Solve for \(y\) and \(z\) Using Equation 5: Substituting \(x = \frac{15}{29}\) into Equation 5: \[ z = 2\left(\frac{15}{29}\right) + 1 = \frac{30}{29} + \frac{29}{29} = \frac{59}{29} \] ### Final Step: Write the vector \(\vec{b}\) Now substituting \(x\), \(y\), and \(z\) back into the expression for \(\vec{b}\): \[ \vec{b} = \frac{15}{29}\hat{i} - \frac{8}{29}\hat{j} + \frac{1}{29}\hat{k} \] Thus, the final answer is: \[ \vec{b} = \frac{1}{29}(15\hat{i} - 8\hat{j} + \hat{k}) \] ### Conclusion The correct option is: \[ \text{Option B: } \frac{1}{29}(15\hat{i} - 8\hat{j} + \hat{k}) \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 92

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 94

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk , then vecb is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

If veca=hati+hatj+hatk , vecb=2hati+hatj-hatk and vecc=4hati+3hatj+hatk then value of ((veca+vecb)xx(veca -(veca-vecb)xxvecb)))xxvecc is

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 93-MATHEMATICS
  1. Let the lines (y-2)=m(1)(x-5) and (y+4)=m(2)(x-3) intersect at right a...

    Text Solution

    |

  2. The differential equation of the family of curves py^(2)=3x-p is (wher...

    Text Solution

    |

  3. If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hat...

    Text Solution

    |

  4. Let A(alpha)=[(cos alpha, 0,sin alpha),(0,1,0),(sin alpha, 0, cos alph...

    Text Solution

    |

  5. Two lines L(1) and L(2) of slops 1 are tangents to y^(2)=4x and x^(2)+...

    Text Solution

    |

  6. A bag contains 21 markers with numbers 1 to 21. A maker is drawn at ra...

    Text Solution

    |

  7. In (3 3+1/(3 3))^n if the ratio of 7th term from the beginning to the ...

    Text Solution

    |

  8. The number of ways in which 10 boys can take positions around a circul...

    Text Solution

    |

  9. If the equation x^2=a x+b=0 has distinct real roots and x^2+a|x|+b=0 h...

    Text Solution

    |

  10. If a=underset("55 times")ubrace("111................1,") b=1+10+10^(...

    Text Solution

    |

  11. The expression sin27^@cos57^@sin87^@ simplifies to

    Text Solution

    |

  12. If I=int(dx)/(root(3)(x^((5)/(2))(1+x)^((7)/(2))))=kf(x)+c, where c is...

    Text Solution

    |

  13. A plane P = 0 is the perependicular bisector of the line joining the p...

    Text Solution

    |

  14. The focal chord of the parabola y^(2)=32x touches the ellipse (x^(2))/...

    Text Solution

    |

  15. If m and M denotes the minimum and maximum value of |2z+1|, where |z-2...

    Text Solution

    |

  16. If L=lim(xrarr0)((e^(-x^(2)/2)-cosx)/(x^(2)tan^(2)x)), then the value ...

    Text Solution

    |

  17. If A(1), A(2), A(3)...........A(20) are 20 skew - symmetric matrices o...

    Text Solution

    |

  18. If the locus of the image of the point (lambda^(2), 2lambda) in the li...

    Text Solution

    |

  19. The number of values of a for which the curves 4x^(2)+a^(2)y^(2)=4a^(2...

    Text Solution

    |

  20. The number of solutions of the equation log(sqrt2sin x)(1+cosx)=2 in t...

    Text Solution

    |