Home
Class 12
MATHS
Let A(alpha)=[(cos alpha, 0,sin alpha),(...

Let `A(alpha)=[(cos alpha, 0,sin alpha),(0,1,0),(sin alpha, 0, cos alpha)] and [(x,y,z)]=[(0,1,0)]`. If the system of equations has infinite solutions and sum of all the possible value of `alpha` in `[0, 2pi]` is `kpi`, then the value of k is equal to

A

0

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given matrix and determine the conditions for which the system of equations has infinite solutions. ### Step 1: Write down the matrix and the equation The matrix \( A(\alpha) \) is given by: \[ A(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix} \] We are also given the equation: \[ (x, y, z) = (0, 1, 0) \] ### Step 2: Determine the condition for infinite solutions For the system of equations represented by the matrix to have infinite solutions, the determinant of the matrix must be zero: \[ \text{det}(A(\alpha)) = 0 \] ### Step 3: Calculate the determinant To find the determinant of the matrix \( A(\alpha) \): \[ \text{det}(A(\alpha)) = \cos \alpha \cdot \text{det}\begin{pmatrix} 1 & 0 \\ 0 & \cos \alpha \end{pmatrix} - 0 + \sin \alpha \cdot \text{det}\begin{pmatrix} 0 & 1 \\ \sin \alpha & 0 \end{pmatrix} \] Calculating the determinants of the 2x2 matrices: \[ \text{det}\begin{pmatrix} 1 & 0 \\ 0 & \cos \alpha \end{pmatrix} = 1 \cdot \cos \alpha - 0 = \cos \alpha \] \[ \text{det}\begin{pmatrix} 0 & 1 \\ \sin \alpha & 0 \end{pmatrix} = 0 \cdot 0 - 1 \cdot \sin \alpha = -\sin \alpha \] Thus, \[ \text{det}(A(\alpha)) = \cos \alpha \cdot \cos \alpha + \sin \alpha \cdot (-\sin \alpha) = \cos^2 \alpha - \sin^2 \alpha \] ### Step 4: Set the determinant to zero Setting the determinant to zero gives: \[ \cos^2 \alpha - \sin^2 \alpha = 0 \] This simplifies to: \[ \cos^2 \alpha = \sin^2 \alpha \] ### Step 5: Solve for \( \alpha \) This implies: \[ \tan^2 \alpha = 1 \quad \Rightarrow \quad \tan \alpha = \pm 1 \] Thus, the solutions for \( \alpha \) are: \[ \alpha = \frac{\pi}{4} + n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 6: Find values of \( \alpha \) in the interval \( [0, 2\pi] \) We need to find the values of \( \alpha \) in the interval \( [0, 2\pi] \): 1. For \( n = 0 \): \( \alpha = \frac{\pi}{4} \) 2. For \( n = 1 \): \( \alpha = \frac{5\pi}{4} \) 3. For \( n = -1 \): \( \alpha = -\frac{3\pi}{4} \) (not in the interval) 4. For \( n = 2 \): \( \alpha = \frac{9\pi}{4} \) (not in the interval) Thus, the valid values of \( \alpha \) in \( [0, 2\pi] \) are: \[ \frac{\pi}{4}, \frac{5\pi}{4} \] ### Step 7: Sum the valid values of \( \alpha \) Now, we sum the valid values: \[ \text{Sum} = \frac{\pi}{4} + \frac{5\pi}{4} = \frac{6\pi}{4} = \frac{3\pi}{2} \] ### Step 8: Express the sum in the form \( k\pi \) We can express the sum as: \[ \frac{3\pi}{2} = k\pi \quad \Rightarrow \quad k = \frac{3}{2} \] ### Conclusion However, we need to find the total sum of all possible values of \( \alpha \) in the interval \( [0, 2\pi] \). The valid values are \( \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \). Calculating the sum: \[ \frac{\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{4} + \frac{7\pi}{4} = \frac{16\pi}{4} = 4\pi \] Thus, we have: \[ k = 4 \] ### Final Answer The value of \( k \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 92

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 94

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let A_(alpha)=[[cos alpha,-sin alpha,osin alpha,cos alpha,00,0,1]]

If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,0),(0,k)] , then k is equal to

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Let f(x)=|(4x+1,-cosx,-sinx),(6,8sinalpha,0),(12sinalpha, 16sin^(2)alpha,1+4sinalpha)| and f(0)=0 . If the sum of all possible values of alpha is kpi for alpha in [0, 2pi] , then the value of k is equal to

Let A=([cos alpha,-sin alphasin alpha,cos alpha]),(alpha in R) such that A^(32)=([0,-11,0]). Then a value of alpha is:

Delta=det[[0,sin alpha,-cos alpha-sin alpha,0,sin betacos alpha,-sin beta,0]]

NTA MOCK TESTS-NTA JEE MOCK TEST 93-MATHEMATICS
  1. Let the lines (y-2)=m(1)(x-5) and (y+4)=m(2)(x-3) intersect at right a...

    Text Solution

    |

  2. The differential equation of the family of curves py^(2)=3x-p is (wher...

    Text Solution

    |

  3. If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hat...

    Text Solution

    |

  4. Let A(alpha)=[(cos alpha, 0,sin alpha),(0,1,0),(sin alpha, 0, cos alph...

    Text Solution

    |

  5. Two lines L(1) and L(2) of slops 1 are tangents to y^(2)=4x and x^(2)+...

    Text Solution

    |

  6. A bag contains 21 markers with numbers 1 to 21. A maker is drawn at ra...

    Text Solution

    |

  7. In (3 3+1/(3 3))^n if the ratio of 7th term from the beginning to the ...

    Text Solution

    |

  8. The number of ways in which 10 boys can take positions around a circul...

    Text Solution

    |

  9. If the equation x^2=a x+b=0 has distinct real roots and x^2+a|x|+b=0 h...

    Text Solution

    |

  10. If a=underset("55 times")ubrace("111................1,") b=1+10+10^(...

    Text Solution

    |

  11. The expression sin27^@cos57^@sin87^@ simplifies to

    Text Solution

    |

  12. If I=int(dx)/(root(3)(x^((5)/(2))(1+x)^((7)/(2))))=kf(x)+c, where c is...

    Text Solution

    |

  13. A plane P = 0 is the perependicular bisector of the line joining the p...

    Text Solution

    |

  14. The focal chord of the parabola y^(2)=32x touches the ellipse (x^(2))/...

    Text Solution

    |

  15. If m and M denotes the minimum and maximum value of |2z+1|, where |z-2...

    Text Solution

    |

  16. If L=lim(xrarr0)((e^(-x^(2)/2)-cosx)/(x^(2)tan^(2)x)), then the value ...

    Text Solution

    |

  17. If A(1), A(2), A(3)...........A(20) are 20 skew - symmetric matrices o...

    Text Solution

    |

  18. If the locus of the image of the point (lambda^(2), 2lambda) in the li...

    Text Solution

    |

  19. The number of values of a for which the curves 4x^(2)+a^(2)y^(2)=4a^(2...

    Text Solution

    |

  20. The number of solutions of the equation log(sqrt2sin x)(1+cosx)=2 in t...

    Text Solution

    |