Home
Class 12
MATHS
Let vec(PR)=3hati+hatj-2hatk and vec(SQ)...

Let `vec(PR)=3hati+hatj-2hatk and vec(SQ)=hati-3hatj-4hatk` represent the diagonals of the parallelogram PQRS. If `vec(PT)=2hati-hatj+hatk` is another vector, then the volume (in cubic units) of the parallelepiped formed by the vectors `vec(PT),vec(PQ) and vec(PS)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the vectors \( \vec{PT}, \vec{PQ}, \) and \( \vec{PS} \), we will follow these steps: ### Step 1: Find the vectors \( \vec{PQ} \) and \( \vec{PS} \) Given the diagonals \( \vec{PR} \) and \( \vec{SQ} \), we can express the vectors \( \vec{PQ} \) and \( \vec{PS} \) in terms of these diagonals. 1. **Using the diagonals**: - The vector \( \vec{PQ} \) can be expressed as: \[ \vec{PQ} = \frac{1}{2}(\vec{PR} - \vec{SQ}) \] - The vector \( \vec{PS} \) can be expressed as: \[ \vec{PS} = \frac{1}{2}(\vec{SQ} - \vec{PR}) \] ### Step 2: Calculate \( \vec{PQ} \) and \( \vec{PS} \) 1. **Calculate \( \vec{PQ} \)**: \[ \vec{PQ} = \frac{1}{2}((3\hat{i} + \hat{j} - 2\hat{k}) - (\hat{i} - 3\hat{j} - 4\hat{k})) \] \[ = \frac{1}{2}((3\hat{i} + \hat{j} - 2\hat{k}) - \hat{i} + 3\hat{j} + 4\hat{k}) \] \[ = \frac{1}{2}((3 - 1)\hat{i} + (1 + 3)\hat{j} + (-2 + 4)\hat{k}) \] \[ = \frac{1}{2}(2\hat{i} + 4\hat{j} + 2\hat{k}) = \hat{i} + 2\hat{j} + \hat{k} \] 2. **Calculate \( \vec{PS} \)**: \[ \vec{PS} = \frac{1}{2}((\hat{i} - 3\hat{j} - 4\hat{k}) - (3\hat{i} + \hat{j} - 2\hat{k})) \] \[ = \frac{1}{2}((\hat{i} - 3\hat{j} - 4\hat{k}) - 3\hat{i} - \hat{j} + 2\hat{k}) \] \[ = \frac{1}{2}((-2\hat{i} - 4\hat{j} - 2\hat{k})) \] \[ = -\hat{i} - 2\hat{j} - \hat{k} \] ### Step 3: Volume of the Parallelepiped The volume \( V \) of the parallelepiped formed by vectors \( \vec{PT}, \vec{PQ}, \) and \( \vec{PS} \) is given by the scalar triple product: \[ V = |\vec{PT} \cdot (\vec{PQ} \times \vec{PS})| \] 1. **Calculate \( \vec{PQ} \times \vec{PS} \)**: \[ \vec{PQ} = \hat{i} + 2\hat{j} + \hat{k} \] \[ \vec{PS} = -\hat{i} - 2\hat{j} - \hat{k} \] Using the determinant method for the cross product: \[ \vec{PQ} \times \vec{PS} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ -1 & -2 & -1 \end{vmatrix} \] \[ = \hat{i}(2 \cdot (-1) - 1 \cdot (-2)) - \hat{j}(1 \cdot (-1) - 1 \cdot (-1)) + \hat{k}(1 \cdot (-2) - 2 \cdot (-1)) \] \[ = \hat{i}(-2 + 2) - \hat{j}(-1 + 1) + \hat{k}(-2 + 2) \] \[ = \hat{i}(0) - \hat{j}(0) + \hat{k}(0) = \vec{0} \] Since the cross product is zero, it indicates that the vectors are coplanar, and thus the volume of the parallelepiped is: \[ V = 0 \] ### Final Answer The volume of the parallelepiped formed by the vectors \( \vec{PT}, \vec{PQ}, \) and \( \vec{PS} \) is **0 cubic units**. ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 93

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 95

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine diagonals of a parallelogram PQRS and bar(PT)=hati+2hatj+3hatk be another vector. Then the volume of the parallelepiped determined by the vectors bar(PT),bar(PQ) and bar(PS) is

The vector vec(A)=6hati+9hatj-3hatkand vecB=2hati+3hatj-hatk are

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk and vec(PQ) and the direction cosines of vec(PQ) .

If vec A=hati +7hatj +hatk and vec B =2 hati+3hatj +4hatk then the component of vec A along vec B is

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .

If vec(A) = hati + 3hatj + 2hatk and vec(B) = 3hati + hatj + 2hatk , then find the vector product vec(A) xx vec(B) .

If vec(A) = 3 hati +2hatj and vec(B) = hati - 2hatj +3hatk , find the magnitudes of vec(A) +vec(B) and vec(A) - vec(B) .

The direction-cosines of te vector vec(a) = hati - hatj - 2 hatk are ,

NTA MOCK TESTS-NTA JEE MOCK TEST 94-MATHEMATICS
  1. If f(x) is continuous in [0, 1] and f((1)/(3))=12, then the value of l...

    Text Solution

    |

  2. For x in ((-pi)/(2),(pi)/(2)), the range of values of values of f(x)=2...

    Text Solution

    |

  3. A biased coin is tossed 10 times. The head is 2 times more likely to a...

    Text Solution

    |

  4. If the line (x-4)/(1)=(y-2)/(1)=(z-m)/(2) lies in the plane 2x+ly+z=7,...

    Text Solution

    |

  5. The least positive integral value of k for which [(cos.(2pi)/(7),-sin....

    Text Solution

    |

  6. The solution of the differential equation xdx+ysin^(2)xdy=ydy+xsin^(2)...

    Text Solution

    |

  7. There are fifty persons among whom 2 are brothers. The number of ways ...

    Text Solution

    |

  8. The product of the roots of the equation whose roots are greater by un...

    Text Solution

    |

  9. The focal chord of y^(2)=64x is tangent to (x-4)^(2)+(y-2)^(2)=4, th e...

    Text Solution

    |

  10. If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of...

    Text Solution

    |

  11. Let 0lt theta(1) lt theta(2) lt theta(3) lt………. denotes the positive s...

    Text Solution

    |

  12. If the point P((3a)/(2),1) lies between the two different lines x+y=a ...

    Text Solution

    |

  13. 50th term of the sequence 3+12+25+42+ is 5145 b. 5148 c. 5142 d. 5195

    Text Solution

    |

  14. A hyperbola having the transverse axis of length sqrt2 units has the s...

    Text Solution

    |

  15. An insect starts from the origin in the argand plane and goes 4 km (N ...

    Text Solution

    |

  16. If the area enclosed by y^(2)=2x and x^(2)+4+4x=4y^(2) is k square uni...

    Text Solution

    |

  17. If lim(xrarr0)(1+px+qx^(2))^("cosec "x)=2048, then the value of (p)/(1...

    Text Solution

    |

  18. Let vec(PR)=3hati+hatj-2hatk and vec(SQ)=hati-3hatj-4hatk represent th...

    Text Solution

    |

  19. The value of the expression Sigma(k=0)^(27)k.^(27)C(k)((1)/(3))^(k)((2...

    Text Solution

    |

  20. Let P and Q be 2 circles externally touhing each other at point X. Lin...

    Text Solution

    |