Home
Class 12
MATHS
Let 2 planes are being contained by the ...

Let 2 planes are being contained by the vectors `alpha hati+3hatj-hatk, hati+(alpha-1)hatj+2hatk and 3hati+5hatj+2hatk`. If the angle between these 2 planes is `theta`, then the value of `cos^(2)theta` is equal to

A

`(15)/(17)`

B

`(289)/(717)`

C

`(289)/(2151)`

D

`(17)/(2151)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^2 \theta \) where \( \theta \) is the angle between two planes defined by three vectors. The vectors are given as: 1. \( \mathbf{v_1} = \alpha \hat{i} + 3 \hat{j} - \hat{k} \) 2. \( \mathbf{v_2} = \hat{i} + (\alpha - 1) \hat{j} + 2 \hat{k} \) 3. \( \mathbf{v_3} = 3 \hat{i} + 5 \hat{j} + 2 \hat{k} \) ### Step 1: Check Co-planarity of the Vectors The vectors are co-planar if the determinant of the matrix formed by these vectors is zero. We can set up the determinant as follows: \[ \text{Det} = \begin{vmatrix} \alpha & 3 & -1 \\ 1 & \alpha - 1 & 2 \\ 3 & 5 & 2 \end{vmatrix} \] ### Step 2: Calculate the Determinant Calculating the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{Det} = \alpha \begin{vmatrix} \alpha - 1 & 2 \\ 5 & 2 \end{vmatrix} - 3 \begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 1 & \alpha - 1 \\ 3 & 5 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} \alpha - 1 & 2 \\ 5 & 2 \end{vmatrix} = (\alpha - 1) \cdot 2 - 5 \cdot 2 = 2\alpha - 2 - 10 = 2\alpha - 12 \) 2. \( \begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix} = 1 \cdot 2 - 3 \cdot 2 = 2 - 6 = -4 \) 3. \( \begin{vmatrix} 1 & \alpha - 1 \\ 3 & 5 \end{vmatrix} = 1 \cdot 5 - 3 \cdot (\alpha - 1) = 5 - 3\alpha + 3 = 8 - 3\alpha \) Putting it all together: \[ \text{Det} = \alpha(2\alpha - 12) - 3(-4) + (8 - 3\alpha) \] \[ = 2\alpha^2 - 12\alpha + 12 + 8 - 3\alpha \] \[ = 2\alpha^2 - 15\alpha + 20 \] ### Step 3: Set the Determinant to Zero For the vectors to be co-planar, we set the determinant to zero: \[ 2\alpha^2 - 15\alpha + 20 = 0 \] ### Step 4: Solve the Quadratic Equation Using the quadratic formula \( \alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ \alpha = \frac{15 \pm \sqrt{(-15)^2 - 4 \cdot 2 \cdot 20}}{2 \cdot 2} \] \[ = \frac{15 \pm \sqrt{225 - 160}}{4} \] \[ = \frac{15 \pm \sqrt{65}}{4} \] ### Step 5: Find the Normals of the Planes The normals to the planes can be calculated using the cross products of the vectors. For the two planes defined by \( \mathbf{v_1}, \mathbf{v_2} \) and \( \mathbf{v_2}, \mathbf{v_3} \): 1. Normal \( \mathbf{n_1} = \mathbf{v_1} \times \mathbf{v_2} \) 2. Normal \( \mathbf{n_2} = \mathbf{v_2} \times \mathbf{v_3} \) ### Step 6: Calculate \( \cos^2 \theta \) Using the formula for the cosine of the angle between two vectors: \[ \cos \theta = \frac{\mathbf{n_1} \cdot \mathbf{n_2}}{|\mathbf{n_1}| |\mathbf{n_2}|} \] Thus, \[ \cos^2 \theta = \left( \frac{\mathbf{n_1} \cdot \mathbf{n_2}}{|\mathbf{n_1}| |\mathbf{n_2}|} \right)^2 \] ### Final Calculation After calculating the dot product and the magnitudes, we can substitute back to find \( \cos^2 \theta \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 94

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 96

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors 4hati-hatj+hatk, 3hati-2hatj-hatk and hati+hatj+2hatk are co-planar.

Find lambda if the vectors hati+hatj+2hatk, lambdahati-hatj+hatk and 3hati-2hatj-hatk are coplanar.

Show that the vectors hati-3hatj+2hatk, 2hati-4hatj-hatk and 3hati+2hatj-hatk are linearly independent

If the vectors 2hati-3hatj+4hatk and hati+2hatj-hatk and m hati - hatj+2hatk are coplanar, then the value of m is

If the figure formed by the four points hati+hatj-hatk,2hati+3hatj,3hati+5hatj-2hatk and hatk-hatj is

Find the angle between the vectors 4hati-2hatj+4hatk and 3hati-6hatj-2hatk.

NTA MOCK TESTS-NTA JEE MOCK TEST 95-MATHEMATICS
  1. Let f (theta)=(1)/(1+(tan theta)^(2021)), then the value of sum(theta=...

    Text Solution

    |

  2. If the circle x^(2)+y^(2)=4x+8y+5 intersects the line 3x-4y=m at two d...

    Text Solution

    |

  3. Let 2 planes are being contained by the vectors alpha hati+3hatj-hatk,...

    Text Solution

    |

  4. If (1,2, p), (2, 8, -6) and (alpha^(2)-2alpha,p,1) are ordered triplet...

    Text Solution

    |

  5. If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+q...

    Text Solution

    |

  6. Let p, q and r be three statements. Consider two compound statements ...

    Text Solution

    |

  7. Two poles standing on a horizontal ground are of height x meters and 4...

    Text Solution

    |

  8. If the function f:R rarr A defined as f(x)=sin^(-1)((x)/(1+x^(2))) is ...

    Text Solution

    |

  9. If function f(x)={{:(asqrt(x+7),,,0lexlt2),(bx+1,,,xge2):} is differen...

    Text Solution

    |

  10. The integral I=int(2sinx)/((3+sin2x))dx simplifies to (where, C is the...

    Text Solution

    |

  11. The least positive term of an arithmetic progression whose first two t...

    Text Solution

    |

  12. Let f(x)=min(x+1,sqrt(1-x))AA x le 1. Then, the area (in sq. units( bo...

    Text Solution

    |

  13. The solution of the differential equation ydx-xdy+lnxdx=0 is (where, C...

    Text Solution

    |

  14. The perpendicular bisector of the line segment joining A(1, 4) and B(t...

    Text Solution

    |

  15. Dice A has 4 red and 2 white faces whereas dice B has 3 red and 3 whit...

    Text Solution

    |

  16. If the normals at two points (x(1),y(1)) and (x(2),y(2)) of the parabo...

    Text Solution

    |

  17. If the locus of the complex number z given by arg(z+i)-arg(z-i)=(2pi)...

    Text Solution

    |

  18. The coefficient of the (2m+1)^("th") and (4m+5)^("th") terms in the ex...

    Text Solution

    |

  19. If the line (x-1)/(2)=(y-2)/(3)=(z-4)/(4) intersect the xy and yz plan...

    Text Solution

    |

  20. The value of lim(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

    Text Solution

    |