Home
Class 12
MATHS
The value of lim(xrarr2pi)(1-(secx)^(sec...

The value of `lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx))` is equal to

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2\pi} \frac{1 - (\sec x)^{\sec x}}{\ln(\sec x)} \), we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \( x = 2\pi \) into the expression: \[ \sec(2\pi) = \frac{1}{\cos(2\pi)} = 1 \] Thus, we have: \[ 1 - (\sec(2\pi))^{\sec(2\pi)} = 1 - 1^1 = 0 \] And, \[ \ln(\sec(2\pi)) = \ln(1) = 0 \] This gives us the form \( \frac{0}{0} \), which is indeterminate. **Hint for Step 1:** Check the values of the functions at the limit point to see if you get an indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. ### Step 3: Differentiate the numerator Let \( y = (\sec x)^{\sec x} \). Taking the natural logarithm on both sides: \[ \ln y = \sec x \ln(\sec x) \] Differentiating both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \sec x \tan x + \sec x \cdot \tan x \cdot \ln(\sec x) \] Thus, \[ \frac{dy}{dx} = y \left( \sec x \tan x + \sec x \tan x \ln(\sec x) \right) \] Substituting back for \( y \): \[ \frac{dy}{dx} = (\sec x)^{\sec x} \left( \sec x \tan x + \sec x \tan x \ln(\sec x) \right) \] ### Step 4: Differentiate the denominator The derivative of \( \ln(\sec x) \) is: \[ \frac{d}{dx} \ln(\sec x) = \sec x \tan x \] ### Step 5: Apply L'Hôpital's Rule Now we can rewrite our limit using L'Hôpital's Rule: \[ \lim_{x \to 2\pi} \frac{1 - (\sec x)^{\sec x}}{\ln(\sec x)} = \lim_{x \to 2\pi} \frac{(\sec x)^{\sec x} \left( \sec x \tan x + \sec x \tan x \ln(\sec x) \right)}{\sec x \tan x} \] ### Step 6: Simplify the expression Cancelling \( \sec x \tan x \) from the numerator and denominator gives: \[ \lim_{x \to 2\pi} \left( (\sec x)^{\sec x} \left( 1 + \ln(\sec x) \right) \right) \] ### Step 7: Substitute \( x = 2\pi \) Now substituting \( x = 2\pi \): \[ (\sec(2\pi))^{\sec(2\pi)} = 1^1 = 1 \] And since \( \ln(\sec(2\pi)) = 0 \): \[ 1 \cdot (1 + 0) = 1 \] ### Step 8: Final limit evaluation Thus, the limit evaluates to: \[ \lim_{x \to 2\pi} \frac{1 - (\sec x)^{\sec x}}{\ln(\sec x)} = -1 \] ### Conclusion The value of the limit is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 95

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 97

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equal to

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

(secx-1)(secx+1)

The value of lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

secx=2

inte^(sinx)((sinx+1)/(secx))dx is equal to

inte^(tanx)(sinx-secx)dx is equal to

The value of lim_(xrarr0)(secx+tanx)^(1)/(x) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 96-MATHEMATICS
  1. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  2. Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)...

    Text Solution

    |

  3. The value of lim(xrarr2pi)(1-(secx)^(secx))/(ln(secx)) is equal to

    Text Solution

    |

  4. Let the point at which the circle passing through (0, 0) and (1, 0) to...

    Text Solution

    |

  5. If the vectors (x^(2)-1)hati+2(x^(2)-1)hatj-3(x^(2)-1)hatk, (2x^(2...

    Text Solution

    |

  6. Let the equation of a line through (3, 6, -2) and parallel to the plan...

    Text Solution

    |

  7. If one of the roots of the equation |(7,6,x^(2)-25),(2,x^(2)-25,2),(x^...

    Text Solution

    |

  8. If there are nine straight lines of which five are concurrent at a poi...

    Text Solution

    |

  9. If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx...

    Text Solution

    |

  10. If f(x)={{:(a+tan^(-1)(x-b),,,x ge1),((x)/(2),,,xlt1):} is differentia...

    Text Solution

    |

  11. If the function f:R rarrA defined as f(x)=tan^(-1)((2x^(3))/(1+x^(6)))...

    Text Solution

    |

  12. A vertical tower subtends an angle of 60^(@) at a point on the same le...

    Text Solution

    |

  13. The area bounded by the parabola y=x^(2)+x+1, its tangent at P(1, 3), ...

    Text Solution

    |

  14. The solution of the differential equation xdx+ydy =(xdy-ydx)/(x^(2)+y^...

    Text Solution

    |

  15. The function f(x) =x^(3) - 6x^(2)+ax + b satisfy the conditions of Rol...

    Text Solution

    |

  16. If the image of the point M(lambda,lambda^(2)) on the line x+y = lambd...

    Text Solution

    |

  17. The first, second and seventh terms of an arithmetic progression (all ...

    Text Solution

    |

  18. The points A(3, 6) and B lie on the parabola y^(2)=4ax, such that the ...

    Text Solution

    |

  19. Let P(h, k) be a point on an argand plane equidistant from the roots o...

    Text Solution

    |

  20. If x+y=3-cos 4 theta and x-y=4sin 2 theta,the value of sqrtx+sqrty is ...

    Text Solution

    |