Home
Class 12
MATHS
The value of lim(nrarroo)(cos.(x)/(2)cos...

The value of `lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1)))` is equal to

A

`(x)/(sinx)`

B

`(sinx)/(x)`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \cdots \cos\left(\frac{x}{2^{n+1}}\right) \right), \] we can follow these steps: ### Step 1: Rewrite the Product We can express the product in a more manageable form: \[ \lim_{n \to \infty} \prod_{k=1}^{n+1} \cos\left(\frac{x}{2^k}\right). \] ### Step 2: Use the Identity for Sine Recall the identity for sine: \[ \sin(2x) = 2 \sin(x) \cos(x). \] We can apply this identity iteratively. For example, \[ \sin\left(\frac{x}{2}\right) = 2 \sin\left(\frac{x}{4}\right) \cos\left(\frac{x}{4}\right). \] By applying this identity repeatedly, we can express the sine function in terms of cosines. ### Step 3: Express Sine in Terms of Cosine Continuing from our previous identity, we can write: \[ \sin\left(\frac{x}{2^k}\right) = 2 \sin\left(\frac{x}{2^{k+1}}\right) \cos\left(\frac{x}{2^{k+1}}\right). \] If we apply this for all \( k \) from 1 to \( n \), we can express \( \sin(x) \) as: \[ \sin(x) = 2^n \sin\left(\frac{x}{2^n}\right) \prod_{k=1}^{n} \cos\left(\frac{x}{2^k}\right). \] ### Step 4: Take the Limit Now, taking the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \prod_{k=1}^{n} \cos\left(\frac{x}{2^k}\right) = \frac{\sin(x)}{2^n \sin\left(\frac{x}{2^n}\right)}. \] As \( n \to \infty \), \( \frac{x}{2^n} \to 0 \), and we can use the limit property \( \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \): \[ \lim_{n \to \infty} \frac{\sin\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}} = 1. \] Thus, we have: \[ \lim_{n \to \infty} \prod_{k=1}^{n} \cos\left(\frac{x}{2^k}\right) = \frac{\sin(x)}{x}. \] ### Final Result Therefore, the limit evaluates to: \[ \lim_{n \to \infty} \left( \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \cdots \cos\left(\frac{x}{2^{n+1}}\right) \right) = \frac{\sin(x)}{x}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 96

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 98

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(n))) is equal to

Evaluate lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}

lim_ (n rarr oo) ((cos x) / (2) * (cos x) / (4) (cos x) / (2 ^ (n)))

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))

lim_ (n rarr oo) cos (x) / (2) * cos (x) / (4) * cos (x) / (8) ...... cos (x) / (2 ^ (n))

The value of lim_(x rarr0)(1)/(x^(2))sqrt((1-cos2x)/(1+cos2x))sqrt((1-cos x)/(1+cos x)) is equal to

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

NTA MOCK TESTS-NTA JEE MOCK TEST 97-MATHEMATICS
  1. If e^(x)+e^(f(x))=e, then the domain of the function f is

    Text Solution

    |

  2. The value of lim(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/...

    Text Solution

    |

  3. Let f(x)={{:((1+|sinx|)^((1)/(|sinx|))",",-(pi)/(6)ltxlt0),(e^((tan2x)...

    Text Solution

    |

  4. In a series of 2n observations, half of them are equal to a^(2) and th...

    Text Solution

    |

  5. The number of non negative integral solution of the equation, x+ y+3z ...

    Text Solution

    |

  6. The least integral value of ' a ' for which the graphs y=2a x+1 and y=...

    Text Solution

    |

  7. If the sum of the first 2n terms of the A.P.2,5,8,…, is equal to the s...

    Text Solution

    |

  8. The solution set of x in(-pi,pi) for the inequality sin 2x+1 le cosx+2...

    Text Solution

    |

  9. The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d thet...

    Text Solution

    |

  10. If f(x) satisfies f(x)+f(3-x)=3 AA x in R, then the value of integral ...

    Text Solution

    |

  11. The area (in sq. units) bounded by y=x|x| and the line y=x is equal to

    Text Solution

    |

  12. The equation of the curve for which the slope of the tangent at any po...

    Text Solution

    |

  13. Three boxes are labeled as A, B and C and each box contains 5 balls nu...

    Text Solution

    |

  14. An line parallel to 6hati-3hatj+2hatk intersects the line (x)/(1)=(y)/...

    Text Solution

    |

  15. The value of |(cos.(2pi)/(63),cos.(3pi)/(70),cos.(4pi)/(77)),(cos.(pi)...

    Text Solution

    |

  16. If the system of equation 14x-3y+z=12, x-2y=0 and x+2z=0 has a solutio...

    Text Solution

    |

  17. A triangle has two of its vertices at (0,1) and (2,2) in the cartesian...

    Text Solution

    |

  18. If a circle passes through the point (1, 1) and cuts the circle x^(2)+...

    Text Solution

    |

  19. The length of intercept cut but the line 4x+4sqrt3y-1=0 on the curve y...

    Text Solution

    |

  20. If the eccentricity of the hyperbola (x^(2))/((1+sin theta)^(2))-(y^(2...

    Text Solution

    |