Home
Class 12
MATHS
Let f(x)={{:((1+|sinx|)^((1)/(|sinx|))",...

Let `f(x)={{:((1+|sinx|)^((1)/(|sinx|))",",-(pi)/(6)ltxlt0),(e^((tan2x)/(tan3x))",", 0ltxlt(pi)/(6)),(m",",x=0):}` at `x=0`. Then, the value of l and m are

A

`l=-(2)/(3), m=e^((2)/(3))`

B

`l=(2)/(3), m=e^(-(2)/(3))`

C

`l=(2)/(3), m=e^((2)/(3))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( l \) and \( m \) such that the function \( f(x) \) is continuous at \( x = 0 \). The function is defined piecewise as follows: \[ f(x) = \begin{cases} (1 + |\sin x|)^{\frac{l}{|\sin x|}}, & -\frac{\pi}{6} < x < 0 \\ e^{\frac{\tan 2x}{\tan 3x}}, & 0 < x < \frac{\pi}{6} \\ m, & x = 0 \end{cases} \] ### Step 1: Find the Right-Hand Limit (RHL) as \( x \to 0^+ \) For \( x \) approaching \( 0 \) from the right, we use the second piece of the function: \[ f(x) = e^{\frac{\tan 2x}{\tan 3x}} \] We need to evaluate: \[ \lim_{x \to 0^+} e^{\frac{\tan 2x}{\tan 3x}} \] Using the fact that \( \tan x \approx x \) as \( x \to 0 \): \[ \tan 2x \approx 2x \quad \text{and} \quad \tan 3x \approx 3x \] Thus, \[ \frac{\tan 2x}{\tan 3x} \approx \frac{2x}{3x} = \frac{2}{3} \] Now we can evaluate the limit: \[ \lim_{x \to 0^+} e^{\frac{\tan 2x}{\tan 3x}} = e^{\frac{2}{3}} \] ### Step 2: Find the Left-Hand Limit (LHL) as \( x \to 0^- \) For \( x \) approaching \( 0 \) from the left, we use the first piece of the function: \[ f(x) = (1 + |\sin x|)^{\frac{l}{|\sin x|}} \] As \( x \to 0 \), \( |\sin x| \to 0 \) and \( 1 + |\sin x| \to 1 \). We need to evaluate: \[ \lim_{x \to 0^-} (1 + |\sin x|)^{\frac{l}{|\sin x|}} \] This limit is of the form \( 1^\infty \). We can rewrite it using the exponential limit: \[ \lim_{x \to 0^-} (1 + |\sin x|)^{\frac{l}{|\sin x|}} = e^{\lim_{x \to 0^-} \frac{l \ln(1 + |\sin x|)}{|\sin x|}} \] Using the approximation \( \ln(1 + u) \approx u \) for small \( u \): \[ \ln(1 + |\sin x|) \approx |\sin x| \quad \text{as } x \to 0 \] Thus, we have: \[ \lim_{x \to 0^-} \frac{l \ln(1 + |\sin x|)}{|\sin x|} = \lim_{x \to 0^-} \frac{l |\sin x|}{|\sin x|} = l \] ### Step 3: Set the Limits Equal for Continuity For the function to be continuous at \( x = 0 \), we set the left-hand limit (LHL) equal to the right-hand limit (RHL) and to \( f(0) = m \): \[ e^{\frac{2}{3}} = m \] And also, \[ e^{l} = e^{\frac{2}{3}} \] ### Step 4: Solve for \( l \) and \( m \) From \( e^{l} = e^{\frac{2}{3}} \), we find: \[ l = \frac{2}{3} \] From \( m = e^{\frac{2}{3}} \), we have: \[ m = e^{\frac{2}{3}} \] ### Final Values Thus, the values of \( l \) and \( m \) are: \[ \boxed{l = \frac{2}{3}, \quad m = e^{\frac{2}{3}}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 96

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 98

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {((1+|sin|)^(a/(|sin x|)),",",-(pi)/6 lt x lt 0),(b, ",",x = 0),(e^((tan 2x)/(tan3x)),",",0 lt x lt pi/6):} Then the value of a and b if f is continuous at x = 0, are respectively

If f(x)={{:((1+|sinx|)^((p)/(|sinx|)),",",-(pi)/(6)ltxlt0),(q,":",x=0),(e^(tan3x.cot5x),":",0ltxlt(pi)/(6)):} is continuous at x = 0, then the value of 2p+10lnq is equal to

Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x = 0),(e^(tan 2x//tan 3x)",",0 lt x lt pi//6):} Determine a and b such that f(x) is continuous at x = 0

tan(3x+(pi)/(6))=0

Let f(x) = {{:({1+|sin x|}^(a//|sin x|)", " pi/6 lt x lt 0),(" b, " x = 0 ),(e^(tan 2x//tan 3x) ", "0ltx ltpi/6):} Determine a and b such that f(x) is continous at x = 0.

If f(x)={(1+|sinx|)^(a/(|sinx|), -pi/6

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If f(x)={((sinx+cosx)^(cosecx),-(pi)/2ltxlt0),(a,x=0),((e^(1/x)+e^(2/x)+e^(3/x))/(ae^(-2+1/x)+be(-1+3/x)), 0ltxlt(pi)/2):} is continuous at x=0 then

NTA MOCK TESTS-NTA JEE MOCK TEST 97-MATHEMATICS
  1. If e^(x)+e^(f(x))=e, then the domain of the function f is

    Text Solution

    |

  2. The value of lim(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/...

    Text Solution

    |

  3. Let f(x)={{:((1+|sinx|)^((1)/(|sinx|))",",-(pi)/(6)ltxlt0),(e^((tan2x)...

    Text Solution

    |

  4. In a series of 2n observations, half of them are equal to a^(2) and th...

    Text Solution

    |

  5. The number of non negative integral solution of the equation, x+ y+3z ...

    Text Solution

    |

  6. The least integral value of ' a ' for which the graphs y=2a x+1 and y=...

    Text Solution

    |

  7. If the sum of the first 2n terms of the A.P.2,5,8,…, is equal to the s...

    Text Solution

    |

  8. The solution set of x in(-pi,pi) for the inequality sin 2x+1 le cosx+2...

    Text Solution

    |

  9. The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d thet...

    Text Solution

    |

  10. If f(x) satisfies f(x)+f(3-x)=3 AA x in R, then the value of integral ...

    Text Solution

    |

  11. The area (in sq. units) bounded by y=x|x| and the line y=x is equal to

    Text Solution

    |

  12. The equation of the curve for which the slope of the tangent at any po...

    Text Solution

    |

  13. Three boxes are labeled as A, B and C and each box contains 5 balls nu...

    Text Solution

    |

  14. An line parallel to 6hati-3hatj+2hatk intersects the line (x)/(1)=(y)/...

    Text Solution

    |

  15. The value of |(cos.(2pi)/(63),cos.(3pi)/(70),cos.(4pi)/(77)),(cos.(pi)...

    Text Solution

    |

  16. If the system of equation 14x-3y+z=12, x-2y=0 and x+2z=0 has a solutio...

    Text Solution

    |

  17. A triangle has two of its vertices at (0,1) and (2,2) in the cartesian...

    Text Solution

    |

  18. If a circle passes through the point (1, 1) and cuts the circle x^(2)+...

    Text Solution

    |

  19. The length of intercept cut but the line 4x+4sqrt3y-1=0 on the curve y...

    Text Solution

    |

  20. If the eccentricity of the hyperbola (x^(2))/((1+sin theta)^(2))-(y^(2...

    Text Solution

    |