Home
Class 12
MATHS
The value of |(cos.(2pi)/(63),cos.(3pi)/...

The value of `|(cos.(2pi)/(63),cos.(3pi)/(70),cos.(4pi)/(77)),(cos.(pi)/(72),cos.(pi)/(40),cos.(3pi)/(88)),(1,cos.(pi)/(90),cos.(2pi)/(99))|` is equal to

A

0

B

1

C

`2cos.(pi)/(9)`

D

`cos.(pi)/(11)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \cos\left(\frac{2\pi}{63}\right) & \cos\left(\frac{3\pi}{70}\right) & \cos\left(\frac{4\pi}{77}\right) \\ \cos\left(\frac{\pi}{72}\right) & \cos\left(\frac{\pi}{40}\right) & \cos\left(\frac{3\pi}{88}\right) \\ 1 & \cos\left(\frac{\pi}{90}\right) & \cos\left(\frac{2\pi}{99}\right) \end{vmatrix} \] we will analyze the structure of the determinant and the properties of cosine. ### Step 1: Rewrite the cosine terms We can express the cosine terms in terms of angles that are easier to manipulate. For example, we can use the identity: \[ \cos(x) = \cos\left(\frac{n\pi}{m}\right) \text{ for appropriate } n \text{ and } m \] ### Step 2: Identify relationships among the terms Notice that the angles in the cosine functions are fractions of \(\pi\). We can look for patterns or relationships among these angles. ### Step 3: Check for linear dependence If any two rows (or columns) of the determinant are linearly dependent, the determinant will equal zero. We can check if any of the rows can be expressed as a linear combination of the others. ### Step 4: Calculate the determinant Using properties of determinants, we can simplify our calculations. For instance, if we find that two rows are equal or proportional, the determinant will be zero. ### Step 5: Conclude the value of the determinant After performing the calculations and checking for linear dependence, we conclude that the value of the determinant is: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is \(0\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 96

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 98

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the value of |{:(cos((2pi)/(63)),,cos((3pi)/(70)),,cos((4pi)/(77))),(cos((pi)/(72)),,cos((pi)/(40)),,cos((3pi)/(88))),(1,,cos((pi)/(90)),,cos((2pi)/(99))):}|

(1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is equal to

Knowledge Check

  • The value of "cos"(2pi)/(7)+"cos"(4pi)/(7)+"cos"(6pi)/(7)+"cos"(7pi)/(7) is

    A
    1
    B
    `-1`
    C
    `1//2`
    D
    `-3//2`
  • The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

    A
    `1//8 cos20`
    B
    `-1//8`
    C
    1
    D
    0
  • The value of cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15)), is

    A
    1
    B
    `1//2`
    C
    `1//4`
    D
    `1//16`
  • Similar Questions

    Explore conceptually related problems

    the value of (cos pi)/(7)cos(2(pi)/(7))cos(3(pi)/(7)) is

    The value of cos(pi)/(5)cos.2(pi)/(5)cos4(pi)/(5)cos8(pi)/(5)=

    The value of cos((pi)/(10))cos((2 pi)/(10))cos((4 pi)/(10))cos((8 pi)/(10))cos((16 pi)/(10))

    The value of cos((pi)/(15))cos((2 pi)/(15))cos((4 pi)/(15))cos((8 pi)/(15))=

    The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9), is