Home
Class 12
MATHS
If alpha is a root of the equation 4x^(2...

If `alpha` is a root of the equation `4x^(2)+2x-1=0` and `f(x)=4x^(2)-3x+1`, then `2(f(alpha)+(alpha))` is equal to

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 2(f(\alpha) + \alpha) \) where \( \alpha \) is a root of the equation \( 4x^2 + 2x - 1 = 0 \) and \( f(x) = 4x^2 - 3x + 1 \). ### Step 1: Find the roots of the equation \( 4x^2 + 2x - 1 = 0 \) We will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 4 \), \( b = 2 \), and \( c = -1 \). Calculating the discriminant: \[ b^2 - 4ac = 2^2 - 4 \cdot 4 \cdot (-1) = 4 + 16 = 20 \] Now substituting into the quadratic formula: \[ x = \frac{-2 \pm \sqrt{20}}{2 \cdot 4} = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4} \] Thus, the roots are: \[ \alpha = \frac{-1 + \sqrt{5}}{4} \quad \text{(we can take this as } \alpha \text{)} \] \[ \text{or } \alpha = \frac{-1 - \sqrt{5}}{4} \] ### Step 2: Calculate \( f(\alpha) \) Now we need to calculate \( f(\alpha) \): \[ f(x) = 4x^2 - 3x + 1 \] Substituting \( \alpha \): \[ f(\alpha) = 4\left(\frac{-1 + \sqrt{5}}{4}\right)^2 - 3\left(\frac{-1 + \sqrt{5}}{4}\right) + 1 \] Calculating \( \alpha^2 \): \[ \alpha^2 = \left(\frac{-1 + \sqrt{5}}{4}\right)^2 = \frac{(-1 + \sqrt{5})^2}{16} = \frac{1 - 2\sqrt{5} + 5}{16} = \frac{6 - 2\sqrt{5}}{16} = \frac{3 - \sqrt{5}}{8} \] Now substituting back into \( f(\alpha) \): \[ f(\alpha) = 4 \cdot \frac{3 - \sqrt{5}}{8} - 3 \cdot \frac{-1 + \sqrt{5}}{4} + 1 \] \[ = \frac{12 - 4\sqrt{5}}{8} + \frac{3 - 3\sqrt{5}}{4} + 1 \] \[ = \frac{12 - 4\sqrt{5}}{8} + \frac{6 - 6\sqrt{5}}{8} + \frac{8}{8} \] \[ = \frac{12 - 4\sqrt{5} + 6 - 6\sqrt{5} + 8}{8} = \frac{26 - 10\sqrt{5}}{8} = \frac{13 - 5\sqrt{5}}{4} \] ### Step 3: Calculate \( 2(f(\alpha) + \alpha) \) Now we need to calculate \( 2(f(\alpha) + \alpha) \): \[ f(\alpha) + \alpha = \frac{13 - 5\sqrt{5}}{4} + \frac{-1 + \sqrt{5}}{4} \] \[ = \frac{13 - 5\sqrt{5} - 1 + \sqrt{5}}{4} = \frac{12 - 4\sqrt{5}}{4} = 3 - \sqrt{5} \] Now multiplying by 2: \[ 2(f(\alpha) + \alpha) = 2(3 - \sqrt{5}) = 6 - 2\sqrt{5} \] ### Final Answer Thus, the value of \( 2(f(\alpha) + \alpha) \) is: \[ \boxed{6 - 2\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 97

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 99

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If alpha is a roots equations 4x^(2)+2x-1=0 and f(x)=4x^(3)-3x+1, then 2(f(alpha)+alpha)

If alpha is a root of the equation 4x^(2)+2x-1=0 then the other root is given by

If f(x)=4x^(2)+3x-7 and alpha is a common root of the equation x^(2)-3x+2=0 and x^(2)+2x-3=0 then the value of f(alpha) is

If alpha be a root of the equation,4x^(2)+2x-1=0, then 4 alpha^(3)-3 alpha is other root.

If alpha is a root of the equation 4x^(2)+2x-1=0, then prove that 4 alpha^(3)-3 alpha is the other root.

If alpha be a root of the equation, 4 x^2 + 2x - 1 =0 , then 4 alpha^3 - 3 alpha is other root.

If alpha is a root of the equation 4x^(2)+2x-1=0 then the other root is given by O -2 alpha-1 O 4 alpha^(2)+alpha-1 O 4 alpha^(3)-3 alpha O 4 alpha^(2)-3 alpha

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is:

If alpha and beta are the roots of the equation 4x^(2)+3x+7=0, then (1)/(alpha)+(1)/(beta)=

NTA MOCK TESTS-NTA JEE MOCK TEST 98-MATHEMATICS
  1. Let A and B are 3xx3 matrices with real number entries, where A is sym...

    Text Solution

    |

  2. Coefficient of x^(48) in underset(r=0)overset(50)sum.^(50)C(r).(x-2)^(...

    Text Solution

    |

  3. If alpha is a root of the equation 4x^(2)+2x-1=0 and f(x)=4x^(2)-3x+1,...

    Text Solution

    |

  4. A trapezium is formed by the pair of tangents of parabola P:y=(x^(2))/...

    Text Solution

    |

  5. If A ={ theta : 2cos^2 theta + sintheta <=2} , and B = {theta: pi/2<=t...

    Text Solution

    |

  6. If the function f(x)=((1-x))/(2)tan.(pix)/(2) is continuous at x = 1, ...

    Text Solution

    |

  7. Consider the statement p : If slope of a straight line is 1 then it is...

    Text Solution

    |

  8. The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) i...

    Text Solution

    |

  9. A balloon moving in a straight line passes vertically above two points...

    Text Solution

    |

  10. A line with gradient 2 intersects a line with gradient 6 at the point ...

    Text Solution

    |

  11. If f(x) is a continuous function satisfying f(x)=f(2-x), then the valu...

    Text Solution

    |

  12. The focus of the conic represented parametrically by the equation y=t^...

    Text Solution

    |

  13. The sum of infinite terms of the sequence whose r^("th") term is given...

    Text Solution

    |

  14. If the lines (x-1)/(2)=(y)/(-1)=(z)/(2) and x-y+z-2=0=lambdax+3z+5 are...

    Text Solution

    |

  15. Five numbers are selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9. The proba...

    Text Solution

    |

  16. A curve is such that the slope of the tangent to it at any point P is ...

    Text Solution

    |

  17. If A is an invertible square matrix of the order n such that |A| ne1 a...

    Text Solution

    |

  18. Let f(x) be a continuous and positive function, such that the area bou...

    Text Solution

    |

  19. A committee of ten is to be formed from eight teachers and twelve stud...

    Text Solution

    |

  20. The value of lim(xrarr0^(-))(4^((3)/(x))+15(2^((1)/(x))))/(2^(1+(6)/(x...

    Text Solution

    |