Home
Class 12
MATHS
The valueof 2sin^(-1).(4)/(5)+2sin^(-1)....

The valueof `2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65)` is equal to

A

`(3pi)/(2)`

B

`(pi)/(2)`

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2\sin^{-1}\left(\frac{4}{5}\right) + 2\sin^{-1}\left(\frac{5}{13}\right) + 2\sin^{-1}\left(\frac{16}{65}\right) \), we can follow these steps: ### Step 1: Factor out the 2 We can factor out the 2 from the entire expression: \[ 2\left(\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right)\right) \] ### Step 2: Use the sine addition formula We will use the formula for the sum of inverse sines: \[ \sin^{-1}(x) + \sin^{-1}(y) = \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) \] Let \( x = \frac{4}{5} \) and \( y = \frac{5}{13} \). ### Step 3: Calculate \( \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) \) First, we need to calculate: - \( \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} \) - \( \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \) Now substituting into the formula: \[ \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \sin^{-1}\left(\frac{4}{5} \cdot \frac{12}{13} + \frac{5}{13} \cdot \frac{3}{5}\right) \] Calculating the terms: \[ \frac{4 \cdot 12}{65} + \frac{5 \cdot 3}{65} = \frac{48 + 15}{65} = \frac{63}{65} \] Thus, \[ \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \sin^{-1}\left(\frac{63}{65}\right) \] ### Step 4: Combine with the third term Now we need to add \( \sin^{-1}\left(\frac{63}{65}\right) + \sin^{-1}\left(\frac{16}{65}\right) \): Using the same sine addition formula: \[ \sin^{-1}\left(\frac{63}{65}\right) + \sin^{-1}\left(\frac{16}{65}\right) = \sin^{-1}\left(\frac{63}{65}\sqrt{1-\left(\frac{16}{65}\right)^2} + \frac{16}{65}\sqrt{1-\left(\frac{63}{65}\right)^2}\right) \] Calculating: - \( \sqrt{1 - \left(\frac{16}{65}\right)^2} = \sqrt{1 - \frac{256}{4225}} = \sqrt{\frac{3969}{4225}} = \frac{63}{65} \) - \( \sqrt{1 - \left(\frac{63}{65}\right)^2} = \sqrt{1 - \frac{3969}{4225}} = \sqrt{\frac{256}{4225}} = \frac{16}{65} \) Substituting: \[ \sin^{-1}\left(\frac{63}{65} \cdot \frac{63}{65} + \frac{16}{65} \cdot \frac{16}{65}\right) = \sin^{-1}\left(\frac{3969 + 256}{4225}\right) = \sin^{-1}\left(\frac{4225}{4225}\right) = \sin^{-1}(1) = \frac{\pi}{2} \] ### Step 5: Final result Thus, we have: \[ 2\left(\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right)\right) = 2 \cdot \frac{\pi}{2} = \pi \] ### Conclusion The final value is: \[ \pi \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 97

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 99

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is equal to

sin[3sin^(-1)((1)/(5))] is equal to

2sin^(-1)((3)/(5))=

Solve : 2pi-(sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65))=

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

"sin"^(-1)(4)/(5)+2"tan"^(-1)(1)/(3) is equal to

Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

NTA MOCK TESTS-NTA JEE MOCK TEST 98-MATHEMATICS
  1. If alpha is a root of the equation 4x^(2)+2x-1=0 and f(x)=4x^(2)-3x+1,...

    Text Solution

    |

  2. A trapezium is formed by the pair of tangents of parabola P:y=(x^(2))/...

    Text Solution

    |

  3. If A ={ theta : 2cos^2 theta + sintheta <=2} , and B = {theta: pi/2<=t...

    Text Solution

    |

  4. If the function f(x)=((1-x))/(2)tan.(pix)/(2) is continuous at x = 1, ...

    Text Solution

    |

  5. Consider the statement p : If slope of a straight line is 1 then it is...

    Text Solution

    |

  6. The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) i...

    Text Solution

    |

  7. A balloon moving in a straight line passes vertically above two points...

    Text Solution

    |

  8. A line with gradient 2 intersects a line with gradient 6 at the point ...

    Text Solution

    |

  9. If f(x) is a continuous function satisfying f(x)=f(2-x), then the valu...

    Text Solution

    |

  10. The focus of the conic represented parametrically by the equation y=t^...

    Text Solution

    |

  11. The sum of infinite terms of the sequence whose r^("th") term is given...

    Text Solution

    |

  12. If the lines (x-1)/(2)=(y)/(-1)=(z)/(2) and x-y+z-2=0=lambdax+3z+5 are...

    Text Solution

    |

  13. Five numbers are selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9. The proba...

    Text Solution

    |

  14. A curve is such that the slope of the tangent to it at any point P is ...

    Text Solution

    |

  15. If A is an invertible square matrix of the order n such that |A| ne1 a...

    Text Solution

    |

  16. Let f(x) be a continuous and positive function, such that the area bou...

    Text Solution

    |

  17. A committee of ten is to be formed from eight teachers and twelve stud...

    Text Solution

    |

  18. The value of lim(xrarr0^(-))(4^((3)/(x))+15(2^((1)/(x))))/(2^(1+(6)/(x...

    Text Solution

    |

  19. If z(1)and z(2) are two distinct complex numbers satisfying the relati...

    Text Solution

    |

  20. Consider two vectors veca=3hati-2hatj+4hatk and vecb=hatj+2hatk. If ve...

    Text Solution

    |