Home
Class 12
MATHS
The number of values of alpha in [-10pi,...

The number of values of `alpha` in `[-10pi, 10pi]` for which the equations `(sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0` and `2x+3y+(cos alpha)z=0` have nontrivial solution is

A

10

B

20

C

40

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of values of \(\alpha\) in the interval \([-10\pi, 10\pi]\) for which the equations \[ (\sin \alpha)x - (\cos \alpha)y + 3z = 0, \] \[ (\cos \alpha)x + (\sin \alpha)y - 2z = 0, \] \[ 2x + 3y + (\cos \alpha)z = 0 \] have a nontrivial solution, we need to analyze the determinant of the coefficient matrix formed by these equations. ### Step 1: Form the Coefficient Matrix The coefficient matrix \(A\) corresponding to the given equations is: \[ A = \begin{bmatrix} \sin \alpha & -\cos \alpha & 3 \\ \cos \alpha & \sin \alpha & -2 \\ 2 & 3 & \cos \alpha \end{bmatrix} \] ### Step 2: Set the Determinant to Zero For the system to have a nontrivial solution, we need to set the determinant of the matrix \(A\) to zero: \[ \text{det}(A) = 0 \] ### Step 3: Calculate the Determinant We can calculate the determinant using the first row: \[ \text{det}(A) = \sin \alpha \begin{vmatrix} \sin \alpha & -2 \\ 3 & \cos \alpha \end{vmatrix} + \cos \alpha \begin{vmatrix} \cos \alpha & -2 \\ 2 & \cos \alpha \end{vmatrix} + 3 \begin{vmatrix} \cos \alpha & \sin \alpha \\ 2 & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} \sin \alpha & -2 \\ 3 & \cos \alpha \end{vmatrix} = \sin \alpha \cos \alpha + 6\) 2. \(\begin{vmatrix} \cos \alpha & -2 \\ 2 & \cos \alpha \end{vmatrix} = \cos^2 \alpha + 4\) 3. \(\begin{vmatrix} \cos \alpha & \sin \alpha \\ 2 & 3 \end{vmatrix} = 3 \cos \alpha - 2 \sin \alpha\) Putting it all together: \[ \text{det}(A) = \sin \alpha (\sin \alpha \cos \alpha + 6) + \cos \alpha (\cos^2 \alpha + 4) + 3(3 \cos \alpha - 2 \sin \alpha) \] ### Step 4: Simplify the Determinant Expanding this expression gives: \[ \sin^2 \alpha \cos \alpha + 6 \sin \alpha + \cos^3 \alpha + 4 \cos \alpha + 9 \cos \alpha - 6 \sin \alpha \] Combining like terms: \[ \sin^2 \alpha \cos \alpha + \cos^3 \alpha + 7 \cos \alpha - 6 \sin \alpha = 0 \] ### Step 5: Factor the Equation We can factor out \(\cos \alpha\): \[ \cos \alpha (\sin^2 \alpha + \cos^2 \alpha + 7) - 6 \sin \alpha = 0 \] Since \(\sin^2 \alpha + \cos^2 \alpha = 1\): \[ \cos \alpha (1 + 7) - 6 \sin \alpha = 0 \] This simplifies to: \[ 8 \cos \alpha - 6 \sin \alpha = 0 \] ### Step 6: Solve for \(\alpha\) Rearranging gives: \[ \frac{8}{6} = \frac{\sin \alpha}{\cos \alpha} \Rightarrow \tan \alpha = \frac{4}{3} \] ### Step 7: Find General Solutions The general solutions for \(\alpha\) are: \[ \alpha = \tan^{-1}\left(\frac{4}{3}\right) + n\pi \] ### Step 8: Count Solutions in the Interval To find the number of solutions in the interval \([-10\pi, 10\pi]\): 1. The principal value \(\alpha_0 = \tan^{-1}\left(\frac{4}{3}\right)\). 2. The general solution can be expressed as: \[ \alpha = \tan^{-1}\left(\frac{4}{3}\right) + n\pi \] 3. The range for \(n\) can be calculated as follows: \[ -10\pi \leq \tan^{-1}\left(\frac{4}{3}\right) + n\pi \leq 10\pi \] Calculating the bounds for \(n\): - For the lower bound: \[ n \geq \frac{-10\pi - \tan^{-1}\left(\frac{4}{3}\right)}{\pi} \] - For the upper bound: \[ n \leq \frac{10\pi - \tan^{-1}\left(\frac{4}{3}\right)}{\pi} \] ### Step 9: Calculate the Number of Integer Values of \(n\) The total number of integer values of \(n\) can be found by taking the difference of the upper and lower bounds and adding 1. ### Conclusion After calculating, we find that there are \(20\) values of \(\alpha\) in the interval \([-10\pi, 10\pi]\) for which the equations have a nontrivial solution.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 98

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA TPC JEE MAIN TEST 100

    NTA MOCK TESTS|Exercise MATHEMATICS (SUBJECTIVE NUMERICAL)|10 Videos

Similar Questions

Explore conceptually related problems

The value of alpha for which the system of linear equations: x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,-x+(sin alpha)y+(-cos alpha)z=0 has a non - trivial solution could be

If system of equations (tan alpha)x+(cot alpha)y+(8cos2 alpha)z=0

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

Let lambda "and" alpha be real. Let S denote the set of all values of lambda for which the system of linear equations lambda x+(sinalpha)y+(cos alpha)z=0 x+(cos alpha) y+(sin alpha) z=0 -x+ (sin alpha) y-(cos alpha) z=0 has a non- trivial solution then S contains

Let lambda and alpha be real.Find the set of all values of lambda for which the system of linear equations lambda x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,quad -x+(sin alpha)y-(cos alpha)z=0

Let lambda and alpha be real. Find the set of all values of lambda for which the system of linear equations lambdax + ("sin"alpha)y + ("cos" alpha)z =0 , x + ("cos"alpha)y + ("sin" alpha) z =0 and -x + ("sin" alpha)y -("cos" alpha)z =0 has a non-trivial solution. For lambda =1 , find all values of alpha .

If x=a sin alpha+b cos alpha and y=a cos alpha-b sin alpha then remove alpha

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

NTA MOCK TESTS-NTA JEE MOCK TEST 99-MATHEMATICS
  1. Two circles have an external tangent with length 36 cm. The shortest d...

    Text Solution

    |

  2. If 4 letter words are formed using letters of the word 'MORADABAD'. Th...

    Text Solution

    |

  3. The number of values of alpha in [-10pi, 10pi] for which the equations...

    Text Solution

    |

  4. The line joining (5,0) to (10cos theta,10sin theta) is divided interna...

    Text Solution

    |

  5. Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk...

    Text Solution

    |

  6. Find the common tangent of y=1+x^(2) and x^(2)+y-1=0. Also find their ...

    Text Solution

    |

  7. For a complex number z, if z^(2)+barz-z=4i and z does not lie in the f...

    Text Solution

    |

  8. The solution of the differential equation (1-x^(2)).(dy)/(dx)+xy=(x-x^...

    Text Solution

    |

  9. If the equation ax^2+2bx-3c=0 has non real roots and < a+b then c is...

    Text Solution

    |

  10. If I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(lnx)^(3)))dx=ksqrt((lnx)^(3)+1)(...

    Text Solution

    |

  11. The function f(x)=pix^(3)-(3pi)/(2)(a+b)x^(2)+3piabx has a local minim...

    Text Solution

    |

  12. The sum sum(r=1)^50 r.(2^r+2^(50-r)) equals

    Text Solution

    |

  13. The number of five - digit telephone numbers having atleast one of the...

    Text Solution

    |

  14. The limit L=lim(nrarroo)Sigma(r=4)^(n-4)(n)/(n^(2)+r^(2)) satisfies th...

    Text Solution

    |

  15. The sum of the first three terms of an arithmetic progression is 9 and...

    Text Solution

    |

  16. The number of solution of the equation Sigma(r=1)^(5)cos(rx)=0 lying i...

    Text Solution

    |

  17. The marks obtained by 9 students in a chemistry test are 50, 69, 20, 3...

    Text Solution

    |

  18. Let A and B are square matrices of order 3. If |A|=4, |B|=6, B=A-2I an...

    Text Solution

    |

  19. Tangents are drawn from a point P to the hyperbola x^2/2-y^2= 1 If the...

    Text Solution

    |

  20. Let A=x^(4)+4x^(3)+2x^(2)-4x+7 where x=cot.(11pi)/(8) and B=(1-cos 8th...

    Text Solution

    |