Home
Class 12
MATHS
The indefinite integral I=int(sec^(2)xta...

The indefinite integral `I=int(sec^(2)xtanx(secx+tanx)dx)/((sec^(5)x+sec^(2)xtan^(3)x-sec^(3)x tan^(2)x-tan^(5)x))` simplifies to `(1)/(3)ln |f(x)|+c`, where `f((pi)/(4))=2sqrt2+1` and c is the constant of integration. If the value of `f((pi)/(3))` is `a+sqrtb`, then the value of `b-3a` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the indefinite integral and simplify it step by step. Let's break down the solution: ### Step 1: Write the Integral We start with the integral: \[ I = \int \frac{\sec^2 x \tan x (\sec x + \tan x)}{\sec^5 x + \sec^2 x \tan^3 x - \sec^3 x \tan^2 x - \tan^5 x} \, dx \] ### Step 2: Factor the Denominator We can factor the denominator: \[ \sec^5 x + \sec^2 x \tan^3 x - \sec^3 x \tan^2 x - \tan^5 x \] By taking \(\sec^2 x\) common from the first two terms and \(\tan^2 x\) from the last two terms, we can rewrite it as: \[ \sec^2 x (\sec^3 x + \tan^3 x) - \tan^2 x (\sec^3 x + \tan^3 x) = (\sec^3 x + \tan^3 x)(\sec^2 x - \tan^2 x) \] ### Step 3: Use the Identity Using the identity \(\sec^2 x - \tan^2 x = 1\), we simplify the denominator: \[ \sec^5 x + \sec^2 x \tan^3 x - \sec^3 x \tan^2 x - \tan^5 x = \sec^3 x + \tan^3 x \] ### Step 4: Substitute and Simplify Now we can substitute this back into the integral: \[ I = \int \frac{\sec^2 x \tan x (\sec x + \tan x)}{\sec^3 x + \tan^3 x} \, dx \] ### Step 5: Let \(T = \sec^3 x + \tan^3 x\) Let \(T = \sec^3 x + \tan^3 x\). Then, differentiate \(T\): \[ \frac{dT}{dx} = 3\sec^2 x \tan x + 3\tan^2 x \sec^2 x = 3\sec^2 x \tan x (\sec x + \tan x) \] ### Step 6: Change of Variables Thus, we can express \(dx\) in terms of \(dT\): \[ dx = \frac{dT}{3\sec^2 x \tan x (\sec x + \tan x)} \] ### Step 7: Substitute Back into the Integral Substituting back into the integral gives: \[ I = \int \frac{1}{3} \frac{dT}{T} = \frac{1}{3} \ln |T| + C \] ### Step 8: Substitute \(T\) Back Substituting \(T\) back gives: \[ I = \frac{1}{3} \ln |\sec^3 x + \tan^3 x| + C \] ### Step 9: Evaluate \(f\left(\frac{\pi}{4}\right)\) Given that \(f\left(\frac{\pi}{4}\right) = 2\sqrt{2} + 1\), we can find \(f\left(\frac{\pi}{3}\right)\): \[ f\left(\frac{\pi}{3}\right) = \sec^3\left(\frac{\pi}{3}\right) + \tan^3\left(\frac{\pi}{3}\right) \] Calculating: \[ \sec\left(\frac{\pi}{3}\right) = 2, \quad \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, \[ f\left(\frac{\pi}{3}\right) = 2^3 + (\sqrt{3})^3 = 8 + 3\sqrt{3} \] ### Step 10: Identify \(a\) and \(b\) From \(f\left(\frac{\pi}{3}\right) = a + \sqrt{b}\), we have: \[ a = 8, \quad b = 27 \] ### Step 11: Calculate \(b - 3a\) Now, we calculate: \[ b - 3a = 27 - 3 \cdot 8 = 27 - 24 = 3 \] ### Final Answer Thus, the value of \(b - 3a\) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS TEST

    NTA MOCK TESTS|Exercise MATHEMATICS|30 Videos
  • NTA JEE MOCK TEST 101

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The integral int(sec^2x)/(3+4tan x)dx

Integrate: int (secx dx)/(sec x + tan x)

Integrate : int(sec^(2)x)/(a+b tan x)dx

Integrate : int(sec^(2)x)/(sqrt(1+tan x))dx

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

Integrate : int(sec^(2)x)/(sqrt(tan^(2)x+4))dx

Let intsin(2x)ln(cosx)dx=f(x)cos^(2)x+C , (where, C is the constant of integration) and f(0)=(1)/(2) , If f((pi)/(3)) is equal to (1)/(a)+lnb, then the value of a+b is

int(4sec^(2)x tan x)/(sec^(2)x+tan^(2)x)dx=log|1+f(x)|+C

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 100-MATHEMATICS
  1. The locus of mid - points of all chords of parabola y^(2)=4x, for whic...

    Text Solution

    |

  2. An exam consists of 3 problems selected randomly from a collection of ...

    Text Solution

    |

  3. If the matrix A=[(2,5), (1,3)], then the value of (|A^(100)+A^(98)|)/(...

    Text Solution

    |

  4. Let f(x)=(x(3^(x)-1))/(1-cosx)" for "x ne0. Then value of f(0), which ...

    Text Solution

    |

  5. The total number of divisors of the number N=2^(5).3^(4).5^(10).7^(6) ...

    Text Solution

    |

  6. The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

    Text Solution

    |

  7. For any two sets A and B, the values of [(A-B)uuB]^(C ) is equal to

    Text Solution

    |

  8. Tangents are drawn to a unit circle with centre at the origin from eac...

    Text Solution

    |

  9. A straight line L cuts the sides AB, AC, AD of a parallelogram ABCD at...

    Text Solution

    |

  10. If eccentricity of the ellipse (x^(2))/(a^(2)+1)+(y^(2))/(a^(2)+2)=1 i...

    Text Solution

    |

  11. If the cubic equation z^(3)+az^(2)+bz+c=0 AA a, b, c in R, c ne0 has a...

    Text Solution

    |

  12. If the integral I(n)=int(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx,. Then the...

    Text Solution

    |

  13. In an arithmetic progression the (p+1)^("th") term is twice the (q+1)^...

    Text Solution

    |

  14. If f(x) is a differentiable function satisfying |f'(x)|le4AA x in [0, ...

    Text Solution

    |

  15. The equation of the curve satisfying the differential equation (dy)/(d...

    Text Solution

    |

  16. The product of a 9xx4 matrix and a 4xx9 matrix contains a variable x i...

    Text Solution

    |

  17. If the mean of 50 observation is 25 and their standard deviation is 4 ...

    Text Solution

    |

  18. If the point M(h, k) lie on the line 2x+3y=5 such that |MA-MB| is maxi...

    Text Solution

    |

  19. The indefinite integral I=int(sec^(2)xtanx(secx+tanx)dx)/((sec^(5)x+se...

    Text Solution

    |

  20. The total number of solutions of the equation sinx tan4x=cosx for all ...

    Text Solution

    |