Home
Class 12
MATHS
Let veca, vecb, vecc be three non - zero...

Let `veca, vecb, vecc` be three non - zero, non - coplanar vectors and `vecp, vecq, vecr` be three vectors given by `vecp=veca+2vecb-2vecc, vecq=3veca+vecb -3vecc and vecr=veca-4vecb+4vecc`. If the volume of parallelepiped determined by `veca, vecb and vecc` is `v_(1)` cubic units and volume of tetrahedron determined by `vecp, vecq and vecr` is `v_(2)` cubic units, then `(v_(1))/(v_(2))` is equal to

A

`(1)/(3)`

B

`(3)/(4)`

C

`(1)/(4)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the volumes of a parallelepiped formed by the vectors \(\vec{a}, \vec{b}, \vec{c}\) and a tetrahedron formed by the vectors \(\vec{p}, \vec{q}, \vec{r}\). ### Step 1: Understand the volumes 1. The volume \(v_1\) of the parallelepiped formed by the vectors \(\vec{a}, \vec{b}, \vec{c}\) is given by the absolute value of the scalar triple product: \[ v_1 = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] 2. The volume \(v_2\) of the tetrahedron formed by the vectors \(\vec{p}, \vec{q}, \vec{r}\) is given by: \[ v_2 = \frac{1}{6} |\vec{p} \cdot (\vec{q} \times \vec{r})| \] ### Step 2: Calculate the vectors \(\vec{p}, \vec{q}, \vec{r}\) The vectors are given as: - \(\vec{p} = \vec{a} + 2\vec{b} - 2\vec{c}\) - \(\vec{q} = 3\vec{a} + \vec{b} - 3\vec{c}\) - \(\vec{r} = \vec{a} - 4\vec{b} + 4\vec{c}\) ### Step 3: Set up the scalar triple product for \(v_2\) To find \(v_2\), we need to calculate the scalar triple product \(\vec{p} \cdot (\vec{q} \times \vec{r})\). #### Step 3.1: Calculate \(\vec{q} \times \vec{r}\) We can express \(\vec{q}\) and \(\vec{r}\) in terms of their coefficients: \[ \vec{q} = 3\vec{a} + \vec{b} - 3\vec{c} \quad \text{(coefficients: 3, 1, -3)} \] \[ \vec{r} = \vec{a} - 4\vec{b} + 4\vec{c} \quad \text{(coefficients: 1, -4, 4)} \] Using the determinant form for the cross product, we can write: \[ \vec{q} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -3 \\ 1 & -4 & 4 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \left(1 \cdot 4 - (-3)(-4)\right) - \hat{j} \left(3 \cdot 4 - (-3)(1)\right) + \hat{k} \left(3 \cdot (-4) - 1 \cdot 1\right) \] \[ = \hat{i} (4 - 12) - \hat{j} (12 + 3) + \hat{k} (-12 - 1) \] \[ = -8\hat{i} - 15\hat{j} - 13\hat{k} \] #### Step 3.2: Calculate \(\vec{p} \cdot (\vec{q} \times \vec{r})\) Now, we compute \(\vec{p} \cdot (\vec{q} \times \vec{r})\): \[ \vec{p} = \vec{a} + 2\vec{b} - 2\vec{c} \quad \text{(coefficients: 1, 2, -2)} \] Thus, \[ \vec{p} \cdot (\vec{q} \times \vec{r}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -2 \\ -8 & -15 & -13 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} (2 \cdot (-13) - (-2)(-15)) - \hat{j} (1 \cdot (-13) - (-2)(-8)) + \hat{k} (1 \cdot (-15) - 2 \cdot (-8)) \] \[ = \hat{i} (-26 - 30) - \hat{j} (-13 - 16) + \hat{k} (-15 + 16) \] \[ = -56\hat{i} + 29\hat{j} + 1\hat{k} \] ### Step 4: Find the volume \(v_2\) Now we can find the volume \(v_2\): \[ v_2 = \frac{1}{6} |\vec{p} \cdot (\vec{q} \times \vec{r})| = \frac{1}{6} \sqrt{(-56)^2 + 29^2 + 1^2} \] ### Step 5: Find the ratio \(\frac{v_1}{v_2}\) Finally, we can find the ratio: \[ \frac{v_1}{v_2} = \frac{|\vec{a} \cdot (\vec{b} \times \vec{c})|}{\frac{1}{6} |\vec{p} \cdot (\vec{q} \times \vec{r})|} = 6 \cdot \frac{|\vec{a} \cdot (\vec{b} \times \vec{c})|}{|\vec{p} \cdot (\vec{q} \times \vec{r})|} \] ### Conclusion After calculating the determinants and simplifying, we find: \[ \frac{v_1}{v_2} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 100

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 102

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, vecq and vecr be three vectors given by vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc and vecr=veca-4vcb+2vecc If the volume of the parallelopiped determined by veca, vecb and vecc is V_(1) and that of the parallelopiped determined by veca, vecq and vecr is V_(2) , then V_(2):V_(1)=

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: veca+3vecb=3vecc, veca-2vecb+3vecc, vec+5vecb-2vecc,6veca=14vecb+4vecc

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 7vec+6vecc, veca+vecb+vec, 2veca-vecb+vecc, vec-vecb-vecc

If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are reciprocal vectors, then (lveca+mvecb+nvecc).(lvecp+mvecq+nvecr) is equal to

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 4veca+5vecb+vecc, -vecb-vecc, 5veca+9vecb+4vecc

If veca, vecb, vecc are three non-zero non-null vectors are vecr is any vector in space then [(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc is equal to

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 101-MATHEMATICS
  1. Let a(1), a(2), a(3) be three positive numbers which are in geometric ...

    Text Solution

    |

  2. The arithmetic mean of the numbers 2sin2^(@), 4sin4^(@), 6 sin 6^(@), ...

    Text Solution

    |

  3. If PQ is the focal chord of the parabola y^(2)=-x and P is (-4, 2), th...

    Text Solution

    |

  4. Consider f(x)={{:([x]+[-x],xne2),(lambda,x=2):} where [.] denotes the ...

    Text Solution

    |

  5. Consider the statement p : If a hexagon is regular than all its sides ...

    Text Solution

    |

  6. If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)), then x is

    Text Solution

    |

  7. A circle C(1) has radius 2 units and a circles C(2) has radius 3 units...

    Text Solution

    |

  8. The number of values of x in the interval [0, 3pi] satisfying the equa...

    Text Solution

    |

  9. From the point P(3, 4) pair of tangents PA and PB are drawn to the ell...

    Text Solution

    |

  10. For two non - zero complex numbers A and B, if A+(1)/(B)=barA and (1)/...

    Text Solution

    |

  11. The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqr...

    Text Solution

    |

  12. Two dice are thrown at a time, the probability that the absolute value...

    Text Solution

    |

  13. Let veca, vecb, vecc be three non - zero, non - coplanar vectors and v...

    Text Solution

    |

  14. The number of matrices X with entries {0,2,3} for which the sum of all...

    Text Solution

    |

  15. Let f(x)=2tan^(3)x-6tan^(2)x+1+sgn(e^(x)),AA x in [-(pi)/(4),(pi)/(4)]...

    Text Solution

    |

  16. If the integral I=int(0)^(pi)=(sec^(-1)(secx))/(1+tan^(8)x)dx, AA x ne...

    Text Solution

    |

  17. The value of lim(xrarr0)(log(1+2x))/(5x)+lim(xrarr2)(x^(4)-2^(4))/(x-2...

    Text Solution

    |

  18. The sum of square of the abscissas fo all the points on the line x+y=4...

    Text Solution

    |

  19. The line x/k=y/2=z/-12 makes an isosceles triangle with the planes 2...

    Text Solution

    |

  20. If the total number of ways of selecting two numbers from the set {1, ...

    Text Solution

    |