Home
Class 12
MATHS
If the integral I=int(0)^(pi)=(sec^(-1)(...

If the integral `I=int_(0)^(pi)=(sec^(-1)(secx))/(1+tan^(8)x)dx, AA x ne (pi)/(2)`, then the value of `[I]` is equal to (where `[.]` is the greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\pi} \frac{\sec^{-1}(\sec x)}{1 + \tan^8 x} \, dx \] we will use the property of definite integrals and some transformations. ### Step 1: Recognize the Integral and Apply the Property We can use the property of definite integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] For our case, \( a = 0 \) and \( b = \pi \). Thus, we have: \[ I = \int_{0}^{\pi} \frac{\sec^{-1}(\sec(\pi - x))}{1 + \tan^8(\pi - x)} \, dx \] ### Step 2: Simplify the Expression Using the identities: - \(\sec(\pi - x) = -\sec x\) - \(\tan(\pi - x) = -\tan x\) We can rewrite the integral: \[ I = \int_{0}^{\pi} \frac{\sec^{-1}(-\sec x)}{1 + \tan^8(-x)} \, dx \] Since \(\sec^{-1}(-\sec x) = \pi - \sec^{-1}(\sec x)\), we have: \[ I = \int_{0}^{\pi} \frac{\pi - \sec^{-1}(\sec x)}{1 + \tan^8 x} \, dx \] ### Step 3: Combine the Two Integrals Now we can add the two expressions for \(I\): \[ 2I = \int_{0}^{\pi} \left( \frac{\sec^{-1}(\sec x)}{1 + \tan^8 x} + \frac{\pi - \sec^{-1}(\sec x)}{1 + \tan^8 x} \right) \, dx \] This simplifies to: \[ 2I = \int_{0}^{\pi} \frac{\pi}{1 + \tan^8 x} \, dx \] ### Step 4: Solve for \(I\) Thus, we can express \(I\) as: \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{\pi}{1 + \tan^8 x} \, dx \] ### Step 5: Evaluate the Integral Now, we need to evaluate: \[ \int_{0}^{\pi} \frac{1}{1 + \tan^8 x} \, dx \] This integral can be computed using symmetry and known results, but for the sake of this problem, we can use the fact that: \[ \int_{0}^{\pi} \frac{1}{1 + \tan^8 x} \, dx = \frac{\pi}{2} \] Thus, \[ I = \frac{1}{2} \cdot \frac{\pi^2}{2} = \frac{\pi^2}{4} \] ### Step 6: Find the Greatest Integer Function Now, we calculate: \[ \lfloor I \rfloor = \lfloor \frac{\pi^2}{4} \rfloor \] Using \(\pi \approx 3.14\), we find: \[ \pi^2 \approx 9.86 \implies \frac{\pi^2}{4} \approx 2.465 \] Thus, \[ \lfloor I \rfloor = 2 \] ### Final Answer The value of \([I]\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 100

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 102

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

If the value of definite integral A=int_(0)^(10pi)[sinx]dx is equal to kpi , then the absolute value of k is equal to (where, [.] is the greatest integer function)

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

If f(x)=[|x|, then int_(0)^(100)f(x)dx is equal to (where I.] denotes the greatest integer function)

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

int_(0)^(pi//4)"sin" x d(x- [x]) is equal to , where [x] denotes greatest integer function-

The value of int_(0)^([x])(2^(x))/(2^([x]))dx is equal to (where,[.] denotes the greatest integer function)

NTA MOCK TESTS-NTA JEE MOCK TEST 101-MATHEMATICS
  1. Let a(1), a(2), a(3) be three positive numbers which are in geometric ...

    Text Solution

    |

  2. The arithmetic mean of the numbers 2sin2^(@), 4sin4^(@), 6 sin 6^(@), ...

    Text Solution

    |

  3. If PQ is the focal chord of the parabola y^(2)=-x and P is (-4, 2), th...

    Text Solution

    |

  4. Consider f(x)={{:([x]+[-x],xne2),(lambda,x=2):} where [.] denotes the ...

    Text Solution

    |

  5. Consider the statement p : If a hexagon is regular than all its sides ...

    Text Solution

    |

  6. If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)), then x is

    Text Solution

    |

  7. A circle C(1) has radius 2 units and a circles C(2) has radius 3 units...

    Text Solution

    |

  8. The number of values of x in the interval [0, 3pi] satisfying the equa...

    Text Solution

    |

  9. From the point P(3, 4) pair of tangents PA and PB are drawn to the ell...

    Text Solution

    |

  10. For two non - zero complex numbers A and B, if A+(1)/(B)=barA and (1)/...

    Text Solution

    |

  11. The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqr...

    Text Solution

    |

  12. Two dice are thrown at a time, the probability that the absolute value...

    Text Solution

    |

  13. Let veca, vecb, vecc be three non - zero, non - coplanar vectors and v...

    Text Solution

    |

  14. The number of matrices X with entries {0,2,3} for which the sum of all...

    Text Solution

    |

  15. Let f(x)=2tan^(3)x-6tan^(2)x+1+sgn(e^(x)),AA x in [-(pi)/(4),(pi)/(4)]...

    Text Solution

    |

  16. If the integral I=int(0)^(pi)=(sec^(-1)(secx))/(1+tan^(8)x)dx, AA x ne...

    Text Solution

    |

  17. The value of lim(xrarr0)(log(1+2x))/(5x)+lim(xrarr2)(x^(4)-2^(4))/(x-2...

    Text Solution

    |

  18. The sum of square of the abscissas fo all the points on the line x+y=4...

    Text Solution

    |

  19. The line x/k=y/2=z/-12 makes an isosceles triangle with the planes 2...

    Text Solution

    |

  20. If the total number of ways of selecting two numbers from the set {1, ...

    Text Solution

    |