Home
Class 12
MATHS
The complete set of values of alpha for ...

The complete set of values of `alpha` for which the lines `(x-1)/(2)=(y-2)/(3)=(z-3)/(4) and (x-3)/(2) =(y-5)/(alpha)=(z-7)/(alpha+2)` are concurrent and coplanar is

A

`{2, 3}`

B

`{0, 3}`

C

`[-2, 3]`

D

R

Text Solution

AI Generated Solution

The correct Answer is:
To determine the complete set of values of \( \alpha \) for which the lines \[ \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \] and \[ \frac{x-3}{2} = \frac{y-5}{\alpha} = \frac{z-7}{\alpha + 2} \] are concurrent and coplanar, we will follow these steps: ### Step 1: Write the parametric equations of the lines For the first line, let \( \lambda \) be the parameter: - \( x = 1 + 2\lambda \) - \( y = 2 + 3\lambda \) - \( z = 3 + 4\lambda \) For the second line, let \( \mu \) be the parameter: - \( x = 3 + 2\mu \) - \( y = 5 + \alpha\mu \) - \( z = 7 + (\alpha + 2)\mu \) ### Step 2: Set the equations equal to find a common point Since the lines are concurrent, there exists a common point for some values of \( \lambda \) and \( \mu \). We equate the \( x \), \( y \), and \( z \) coordinates: 1. From \( x \): \[ 1 + 2\lambda = 3 + 2\mu \quad \Rightarrow \quad 2\lambda - 2\mu = 2 \quad \Rightarrow \quad \lambda - \mu = 1 \quad \text{(Equation 1)} \] 2. From \( y \): \[ 2 + 3\lambda = 5 + \alpha\mu \quad \Rightarrow \quad 3\lambda - \alpha\mu = 3 \quad \text{(Equation 2)} \] 3. From \( z \): \[ 3 + 4\lambda = 7 + (\alpha + 2)\mu \quad \Rightarrow \quad 4\lambda - (\alpha + 2)\mu = 4 \quad \text{(Equation 3)} \] ### Step 3: Solve the equations From Equation 1, we have \( \lambda = \mu + 1 \). Substitute \( \lambda \) in Equations 2 and 3: - Substitute in Equation 2: \[ 3(\mu + 1) - \alpha\mu = 3 \quad \Rightarrow \quad 3\mu + 3 - \alpha\mu = 3 \quad \Rightarrow \quad (3 - \alpha)\mu = 0 \] - This gives us two cases: 1. \( \mu = 0 \) 2. \( 3 - \alpha = 0 \) or \( \alpha = 3 \) - Substitute in Equation 3: \[ 4(\mu + 1) - (\alpha + 2)\mu = 4 \quad \Rightarrow \quad 4\mu + 4 - \alpha\mu - 2\mu = 4 \quad \Rightarrow \quad (4 - \alpha - 2)\mu = 0 \] ### Step 4: Analyze the cases From both cases, we conclude: 1. If \( \mu = 0 \), the lines are concurrent for any \( \alpha \). 2. If \( \alpha = 3 \), the lines are also concurrent. ### Conclusion Thus, the complete set of values of \( \alpha \) for which the lines are concurrent and coplanar is: \[ \alpha \in \mathbb{R} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 101

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 103

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of alpha for which the lines (x-1)/(2)=(2y-1)/(3)=(1-3z)/(alpha) and (x+1)/(2)=(3y-5)/(2)=(z-4)/(3) are perpendicular to each other is

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

Prove that the lines : (x -1)/(2) = (y -2)/(3) = (z -3)/(4) and (x -2)/(3) = (y - 3)/(4) = (z - 4)/(5) are coplanar.

The number of distinct real values of lambda for which the lines (x-1)/(1)=(y-2)/(2)=(z+3)/(lambda^(2)) and (x-3)/(1)=(y-2)/(lambda^(2))=(z-1)/(2) are coplanar is

if the lines (x)/(1)=(y)/(2)=(z)/(3),(x-1)/(3)=(y-2)/(-1)=(z-3)/(4) and (x+k)/(3)=(y-1)/(2)=(z-2)/(h) are concurrent then

If the lines (x)/(1)=(y)/(2)=(z)/(3),(x-1)/(3)=(y-2)/(-1)=(z-3)/(4) and (x+k)/(3)=(y-1)/(2)=(z-2)/(h) are concurrent then

If lines (x-3)/(2)=(y+1)/(-3)=(z+a)/(p) and (x+2)/(2)=(y-4)/(4)=(z+5)/(2) are perpendicular coplanar lines, then

Prove that the lines (x+1)/(3)=(y+3)/(5)=(z+5)/(7) and (x-2)/(1)=(y-4)/(4)=(z-6)/(7) are coplanar. Also, find the plane containing these two lines

NTA MOCK TESTS-NTA JEE MOCK TEST 102-MATHEMATICS
  1. Two natrual numbers are randomly chosen and multiplied, then the chanc...

    Text Solution

    |

  2. If alpha and beta are the roots of the equation x^(2)+x+c=0 such that ...

    Text Solution

    |

  3. In a harmonic progression t(1), t(2), t(3),……………., it is given that t(...

    Text Solution

    |

  4. The locus of the centre of the circle which makes equal intercepts on ...

    Text Solution

    |

  5. Consider the system of equations alphax+y+z = p, x+alphay+z=q and x+y+...

    Text Solution

    |

  6. The normal to the parabola y^(2)=4x at P(9, 6) meets the parabola agai...

    Text Solution

    |

  7. The number of points where f(x)=|x^(2)-3|x|-4| is non - differentiable...

    Text Solution

    |

  8. The complete set of values of alpha for which the lines (x-1)/(2)=(y-2...

    Text Solution

    |

  9. Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx. If 6g(2)+1=0 then...

    Text Solution

    |

  10. Let f(x) be a cubic function such that f'(1)=f''(2)=0. If x=1 is a poi...

    Text Solution

    |

  11. The maximum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  12. The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

    Text Solution

    |

  13. The value of lim(xrarr0^(+)){x^(x^(2))+x^((x^(x)))} is equal to

    Text Solution

    |

  14. The area (in sq. units) bounded by y=lnx, y =(x)/(e ) and y - axis is ...

    Text Solution

    |

  15. Consider three vectors vecp=hati+hatj+hatk, vecq=3hati-hatj+hatk and v...

    Text Solution

    |

  16. If sintheta+sin^(2)theta=1, then prove that cos^(12)theta+3cos^(10)the...

    Text Solution

    |

  17. If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))...

    Text Solution

    |

  18. If the variance of the first 50 odd natural numbers is V(1) and the va...

    Text Solution

    |

  19. If I(1)=int(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I(2)=int(0)^((pi)/(...

    Text Solution

    |

  20. The number of solution of cos^(2)x+cos^(2)2x=2 in [0,20] is equal to

    Text Solution

    |