Home
Class 12
MATHS
Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(...

Let `f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx`. If `6g(2)+1=0` then `g(-(1)/(2))` is equal to

A

4

B

`-4`

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the question and the video transcript. ### Step 1: Define the Functions Given: - \( f(x) = 2x + 1 \) - \( g(x) = \int \frac{f(x)}{x^2 (x + 1)^2} \, dx \) ### Step 2: Rewrite the Integral Substituting \( f(x) \) into the integral for \( g(x) \): \[ g(x) = \int \frac{2x + 1}{x^2 (x + 1)^2} \, dx \] ### Step 3: Simplify the Integral We can split the fraction: \[ g(x) = \int \left( \frac{2x + 1}{x^2 (x + 1)^2} \right) \, dx = \int \left( \frac{2x}{x^2 (x + 1)^2} + \frac{1}{x^2 (x + 1)^2} \right) \, dx \] ### Step 4: Rewrite the Numerator We can rewrite the numerator \( 2x + 1 \) as follows: \[ 2x + 1 = (x^2 + 2x + 1) - x^2 = (x + 1)^2 - x^2 \] Thus, we have: \[ g(x) = \int \left( \frac{(x + 1)^2 - x^2}{x^2 (x + 1)^2} \right) \, dx \] This simplifies to: \[ g(x) = \int \left( \frac{1}{x^2} - \frac{1}{(x + 1)^2} \right) \, dx \] ### Step 5: Integrate Now we can integrate each term: \[ g(x) = \int \frac{1}{x^2} \, dx - \int \frac{1}{(x + 1)^2} \, dx \] The integrals yield: \[ g(x) = -\frac{1}{x} + \frac{1}{x + 1} + C \] ### Step 6: Apply the Given Condition We are given that: \[ 6g(2) + 1 = 0 \] Calculating \( g(2) \): \[ g(2) = -\frac{1}{2} + \frac{1}{3} + C = -\frac{3}{6} + \frac{2}{6} + C = -\frac{1}{6} + C \] Substituting into the condition: \[ 6\left(-\frac{1}{6} + C\right) + 1 = 0 \] This simplifies to: \[ -1 + 6C + 1 = 0 \implies 6C = 0 \implies C = 0 \] ### Step 7: Final Form of \( g(x) \) Thus, we have: \[ g(x) = -\frac{1}{x} + \frac{1}{x + 1} \] ### Step 8: Calculate \( g\left(-\frac{1}{2}\right) \) Now we need to find \( g\left(-\frac{1}{2}\right) \): \[ g\left(-\frac{1}{2}\right) = -\frac{1}{-\frac{1}{2}} + \frac{1}{-\frac{1}{2} + 1} \] Calculating each term: \[ g\left(-\frac{1}{2}\right) = 2 + \frac{1}{\frac{1}{2}} = 2 + 2 = 4 \] ### Final Answer Thus, \( g\left(-\frac{1}{2}\right) = 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 101

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 103

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If (f(x))^(2)xx f((1-x)/(1+x))=64x,x!=0 then If f(x)=(g(x))^((1)/(3)) then g((1)/(2)) is equal to

f(x)=(x^(2))/(1+x^(3));g(t)=int f(t)dt. If g(1)=0 then g(x) equals-

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

int x{f(x^(2))g'(x^(2))-f'(x^(2))g(x^(2))}dx

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1)x^(2)+xf'(x)+f''(x) then f(g(1)) is equal to

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1).x^(2)+xf'(x)+f''(x) then

Let f :R to [(3)/(4), oo) be a surjective quadratic function with line of symmetry 2x -1=0 and f (1) =1 If g (x)=(f(x)+f(-x))/(2 ) then int (dx)/(sqrt(g (e ^(x))-2)) is equal to:

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

NTA MOCK TESTS-NTA JEE MOCK TEST 102-MATHEMATICS
  1. Two natrual numbers are randomly chosen and multiplied, then the chanc...

    Text Solution

    |

  2. If alpha and beta are the roots of the equation x^(2)+x+c=0 such that ...

    Text Solution

    |

  3. In a harmonic progression t(1), t(2), t(3),……………., it is given that t(...

    Text Solution

    |

  4. The locus of the centre of the circle which makes equal intercepts on ...

    Text Solution

    |

  5. Consider the system of equations alphax+y+z = p, x+alphay+z=q and x+y+...

    Text Solution

    |

  6. The normal to the parabola y^(2)=4x at P(9, 6) meets the parabola agai...

    Text Solution

    |

  7. The number of points where f(x)=|x^(2)-3|x|-4| is non - differentiable...

    Text Solution

    |

  8. The complete set of values of alpha for which the lines (x-1)/(2)=(y-2...

    Text Solution

    |

  9. Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx. If 6g(2)+1=0 then...

    Text Solution

    |

  10. Let f(x) be a cubic function such that f'(1)=f''(2)=0. If x=1 is a poi...

    Text Solution

    |

  11. The maximum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  12. The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

    Text Solution

    |

  13. The value of lim(xrarr0^(+)){x^(x^(2))+x^((x^(x)))} is equal to

    Text Solution

    |

  14. The area (in sq. units) bounded by y=lnx, y =(x)/(e ) and y - axis is ...

    Text Solution

    |

  15. Consider three vectors vecp=hati+hatj+hatk, vecq=3hati-hatj+hatk and v...

    Text Solution

    |

  16. If sintheta+sin^(2)theta=1, then prove that cos^(12)theta+3cos^(10)the...

    Text Solution

    |

  17. If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))...

    Text Solution

    |

  18. If the variance of the first 50 odd natural numbers is V(1) and the va...

    Text Solution

    |

  19. If I(1)=int(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I(2)=int(0)^((pi)/(...

    Text Solution

    |

  20. The number of solution of cos^(2)x+cos^(2)2x=2 in [0,20] is equal to

    Text Solution

    |