Home
Class 12
MATHS
Consider three vectors vecp=hati+hatj+ha...

Consider three vectors `vecp=hati+hatj+hatk, vecq=3hati-hatj+hatk and vecr=alpha hati+betahatj+lambdahatk, AA alpha, beta, lambda in R`. If `[(vecp,vecq,vecr)]` is maximum and `[vecr]=2sqrt6`, then the value of `alpha-beta-lambda` is equal to

A

8

B

4

C

0

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the vectors and calculate the required values. ### Step 1: Define the vectors We have three vectors: - \(\vec{p} = \hat{i} + \hat{j} + \hat{k}\) - \(\vec{q} = 3\hat{i} - \hat{j} + \hat{k}\) - \(\vec{r} = \alpha \hat{i} + \beta \hat{j} + \lambda \hat{k}\) ### Step 2: Calculate the cross product \(\vec{p} \times \vec{q}\) To find the box product \([\vec{p}, \vec{q}, \vec{r}]\) which is maximized, we first need to compute \(\vec{p} \times \vec{q}\). The determinant for the cross product is given by: \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 3 & -1 & 1 \end{vmatrix} \] Calculating the determinant: \[ \vec{p} \times \vec{q} = \hat{i} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 3 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = (1)(1) - (1)(-1) = 1 + 1 = 2\) 2. \(\begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = (1)(1) - (1)(3) = 1 - 3 = -2\) 3. \(\begin{vmatrix} 1 & 1 \\ 3 & -1 \end{vmatrix} = (1)(-1) - (1)(3) = -1 - 3 = -4\) Thus, we have: \[ \vec{p} \times \vec{q} = 2\hat{i} + 2\hat{j} - 4\hat{k} \] ### Step 3: Condition for maximum box product The box product \([\vec{p}, \vec{q}, \vec{r}]\) can be expressed as: \[ [\vec{p}, \vec{q}, \vec{r}] = \vec{p} \times \vec{q} \cdot \vec{r} \] To maximize this, \(\vec{r}\) should be parallel to \(\vec{p} \times \vec{q}\). Therefore, we can write: \[ \vec{r} = \mu (\vec{p} \times \vec{q}) = \mu (2\hat{i} + 2\hat{j} - 4\hat{k}) \] ### Step 4: Magnitude of \(\vec{r}\) Given that \(|\vec{r}| = 2\sqrt{6}\), we can express this as: \[ |\vec{r}| = |\mu| \cdot |\vec{p} \times \vec{q}| \] Calculating the magnitude of \(\vec{p} \times \vec{q}\): \[ |\vec{p} \times \vec{q}| = \sqrt{(2)^2 + (2)^2 + (-4)^2} = \sqrt{4 + 4 + 16} = \sqrt{24} = 2\sqrt{6} \] Thus, we have: \[ |\vec{r}| = |\mu| \cdot 2\sqrt{6} \] Setting this equal to \(2\sqrt{6}\): \[ |\mu| \cdot 2\sqrt{6} = 2\sqrt{6} \implies |\mu| = 1 \] So, \(\mu = 1\) or \(\mu = -1\). ### Step 5: Finding \(\alpha\), \(\beta\), and \(\lambda\) Using \(\mu = 1\): \[ \vec{r} = 2\hat{i} + 2\hat{j} - 4\hat{k} \] Thus, we have: - \(\alpha = 2\) - \(\beta = 2\) - \(\lambda = -4\) ### Step 6: Calculate \(\alpha - \beta - \lambda\) Now we calculate: \[ \alpha - \beta - \lambda = 2 - 2 - (-4) = 2 - 2 + 4 = 4 \] ### Final Answer The value of \(\alpha - \beta - \lambda\) is \(4\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 101

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 103

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector perpendicular to two vectors vecP=hati+hatj+2hatk and vecQ=2hati-4hatj+5hatk .

Calculate the angular momentum if vecr=2hati-3hatj-4hatk and vecP= hati+hatj-5hatk .

For any vector vecr , ( vecr.hati) hati + ( vecr.hatj) hatj + ( vecr.hatk) hatk =

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

Let vecp=2hati+3hatj+hatkandvecq=hati+2hatj+hatk be two vectors .If a vector vecr=(alphahati+betahatj+gammahatk) is prependicular to each of the vectors (vecp+vecq)and(vecp-vecq),and|vecr|=sqrt(3) , then |alpha|+|beta|+|gamma| is equal to ____.

If vecp = hati + hatj, vecq = 4hatk - hatj " and " vecr =hati + hatk , then the unit vector in the direction of 3vecp+ vecq - 2vecr is

Calculate the area of the triangle formed by the tips of vectors vecP=2hati+hatj-3hatk, vecQ=3hati-hatj+2hatk and vecR=4hati-3hatj+hatk

NTA MOCK TESTS-NTA JEE MOCK TEST 102-MATHEMATICS
  1. Two natrual numbers are randomly chosen and multiplied, then the chanc...

    Text Solution

    |

  2. If alpha and beta are the roots of the equation x^(2)+x+c=0 such that ...

    Text Solution

    |

  3. In a harmonic progression t(1), t(2), t(3),……………., it is given that t(...

    Text Solution

    |

  4. The locus of the centre of the circle which makes equal intercepts on ...

    Text Solution

    |

  5. Consider the system of equations alphax+y+z = p, x+alphay+z=q and x+y+...

    Text Solution

    |

  6. The normal to the parabola y^(2)=4x at P(9, 6) meets the parabola agai...

    Text Solution

    |

  7. The number of points where f(x)=|x^(2)-3|x|-4| is non - differentiable...

    Text Solution

    |

  8. The complete set of values of alpha for which the lines (x-1)/(2)=(y-2...

    Text Solution

    |

  9. Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx. If 6g(2)+1=0 then...

    Text Solution

    |

  10. Let f(x) be a cubic function such that f'(1)=f''(2)=0. If x=1 is a poi...

    Text Solution

    |

  11. The maximum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  12. The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

    Text Solution

    |

  13. The value of lim(xrarr0^(+)){x^(x^(2))+x^((x^(x)))} is equal to

    Text Solution

    |

  14. The area (in sq. units) bounded by y=lnx, y =(x)/(e ) and y - axis is ...

    Text Solution

    |

  15. Consider three vectors vecp=hati+hatj+hatk, vecq=3hati-hatj+hatk and v...

    Text Solution

    |

  16. If sintheta+sin^(2)theta=1, then prove that cos^(12)theta+3cos^(10)the...

    Text Solution

    |

  17. If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))...

    Text Solution

    |

  18. If the variance of the first 50 odd natural numbers is V(1) and the va...

    Text Solution

    |

  19. If I(1)=int(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I(2)=int(0)^((pi)/(...

    Text Solution

    |

  20. The number of solution of cos^(2)x+cos^(2)2x=2 in [0,20] is equal to

    Text Solution

    |