Home
Class 12
MATHS
If x=(sqrt(2a+1)+sqrt(2a-1))/(sqrt(2a+1)...

If `x=(sqrt(2a+1)+sqrt(2a-1))/(sqrt(2a+1)-sqrt(2a-1)),` than show that `x^2-4ax+1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(sqrt(2a+1)+sqrt(2a-1))/(sqrt(2a+1)-sqrt(2a-1)) , prove that x^(2)-4ax+1=0

If x - sqrt((sqrt5+1)/(sqrt5-1)) , show that x^2-x-1=0

If (sqrt(1 +x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))=3 then x=

If x=(sqrt(a+1)+sqrt(a-1))/(sqrt(a+1)-sqrt(a-1)) , using properties of proportion show that x^(2)-2ax+1=0

(1) x^(2)-(sqrt(2)+1)x+sqrt(2)=0

Differentiate (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)) with respect to x:

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

If x=(1)/(2)(sqrt(a)+(1)/(sqrt(a))) , then show that (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=(a-1)/(2) .

y=tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) show that dy/dx=1/(2sqrt(1-x^2))