Home
Class 12
MATHS
" (iii) "tan(sec^(-1)(1)/(x))=sin cos^(-...

" (iii) "tan(sec^(-1)(1)/(x))=sin cos^(-1)(1)/(sqrt(5))

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of x satisfying tan(sec^(-1)x)=sin(cos^(-1)((1)/(sqrt(5))))

Value of x satisfying tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))

tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt(13)))=

tan (sec ^ (- 1) x) = sin (cos ^ (- 1) ((1) / (sqrt (5))))

If tan(cos^(-1)x)=sin^(-1)(sec^(-1)sqrt(5)) then x=

tan^(-1)(2)=sin^(-1)(2/(sqrt(5)))=cos^(-1)(1/(sqrt(5)))

Evaluate: tan ^ (- 1) 1 + cos ^ (- 1) ((1) / (2)) + sin ^ (- 1) (- (1) / (2)) + tan ^ (- 1) ( -sqrt (3)) - sec ^ (- 1) (- 2) + cos ec ^ (- 1) ((2) / (sqrt (3)))

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

cos^(-1)x = tan^(-1)x , then: a. x^2=((sqrt(5)-1)/2) b. x^2=((sqrt(5)+1)/2) c. sin(cos^(-1)x)=((sqrt(5)-1)/2) d. tan(cos^(-1)x)=((sqrt(5)-1)/2)

Prove that: csc(tan^(-1)(cos(cot^(-1)(sec(sin^(-1)a)))))=sqrt(3-a^(2)) where a in[0,1]