Home
Class 12
MATHS
[" Let "f(x)=int(0)^(x)g(t)dt" where "g"...

[" Let "f(x)=int_(0)^(x)g(t)dt" where "g" is a non-zero "],[" even function.If "f(x+5)=g(x)," then "],[int_(0)^(x)f(t)dt" equals- "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(-x)+f(x)=0 then int_(a)^(x)f(t)dt is

Let g(x) = int_(x)^(2x) f(t) dt where x gt 0 and f be continuous function and 2* f(2x)=f(x) , then

Let g(x)=int_(0)^(x)f(t)dt where fis the function whose graph is shown.

If f(t) is an odd function, then int_(0)^(x)f(t) dt is -

Let G(x)=int e^(x)(int_(0)^(x)f(t)dt+f(x))dx where f(x) is continuous on R. If f(0)=1,G(0)=0 then G(0) equals

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

For the function f(x)=int_(0)^(x)(sin t)/(t)dt where x>0

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to