Home
Class 12
MATHS
Prove the identities: |[b^2+c^2,ab, ac]...

Prove the identities: `|[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

|[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0

Evaluate |[0,c,b] , [c,0,a] , [b,a,0]| hence show that |[0,c,b] , [c,0,a] , [b,a,0]|^2= |[b^2+c^2,ab,ac] , [ab,c^2+a^2,bc] , [ca,bc,a^2+b^2]|=4a^2b^2c^2

Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

Prove that |[b^2+c^2,ab,ac],[ab,c^2+a^2,bc],[ca,cb,a^2+b^2]| is always positive for real a, b and c.

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

Given : a^(2)+b^(2)+c^(2) =0 Prove the following : |{:(b^(2)+c^(2),ab,ca),(ab,c^(2)+a^(2),bc),(ca,bc,a^(2)+b^(2)):}|=4a^(2)b^(2)c^(2)

Show that |[0,c,b] , [c,0,a] , [b,a,0]|^2=|[b^2+c^2, ab, ac] , [ab, c^2+a^2, bc] , [ac, bc, a^2+b^2]|