Home
Class 12
MATHS
If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a...

If `|1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c` are different, then the determinant `|1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)|` vanishes when a.`a+b+c=0` b. `x=1/3(a+b+c)` c. `x=1/2(a+b+c)` d. `x=a+b+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c), then the solution of the equation |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x=-c_(x-c)(x-a)(x-a)(x-b)|=0i s

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+c) where a, b, c are all different, then the determinant |(1,1,1),((x-a)^(2),(x -b)^(2),(x -c)^(2)),((x -b) (x -c),(x -c) (x -a),(x -a) (x -b))| vanishes when

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

(x^(3))/((x-a)(x-b)(x-c))=1+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

Show that (x^(a+b))^(a-b)times(x^(b+c))^(b-c)times(x^(c+a))^(c-a)=1

Solution of equation ((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))=1 is/are.

Prove that :((x^(a))/(x^(b)))^(a+b-c)((x^(b))/(x^(c)))^(b+c-a)((x^(c))/(x^(a)))^(c+a-b)=1