Home
Class 12
PHYSICS
A cart is moving alongs +ve x-direction ...

A cart is moving alongs +ve x-direction with a speed of 4m/s Aperson on the cart throw a stone with a velcity of 6 m/s w.r.t hiumself In the frame of refrence of the cart the stone is thrown in the y-z palne making an angle of `30^(@)` with the verticle z- axies . Then w.r.t an observer on the ground

A

intial speed of the stone is 10 m/s

B

the intial speed of the stone is `2sqrt(13)`m/s

C

the velocity at the highest points of its motion is zero

D

the velocity at the highest points of its motion is 5 m/s

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the motion of the stone thrown from the cart in the context of different reference frames. Here's a step-by-step breakdown of the solution: ### Step 1: Understand the motion of the cart and the stone - The cart is moving in the positive x-direction with a velocity of \( V_c = 4 \, \text{m/s} \). - The stone is thrown by a person on the cart with a velocity of \( V_s = 6 \, \text{m/s} \) relative to the cart. ### Step 2: Analyze the angle of projection - The stone is thrown in the y-z plane, making an angle of \( 30^\circ \) with the vertical z-axis. - This means we can resolve the stone's velocity into its y and z components: - The vertical component (z-direction) is given by: \[ V_z = V_s \cos(30^\circ) = 6 \cos(30^\circ) = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3} \, \text{m/s} \] - The horizontal component (y-direction) is given by: \[ V_y = V_s \sin(30^\circ) = 6 \sin(30^\circ) = 6 \times \frac{1}{2} = 3 \, \text{m/s} \] ### Step 3: Combine the velocities in the ground frame - The stone's velocity in the ground frame will have three components: x, y, and z. - The x-component of the stone's velocity is simply the velocity of the cart: \[ V_x = V_c = 4 \, \text{m/s} \] - Therefore, the total velocity components of the stone with respect to an observer on the ground are: - \( V_x = 4 \, \text{m/s} \) - \( V_y = 3 \, \text{m/s} \) - \( V_z = 3\sqrt{3} \, \text{m/s} \) ### Step 4: Calculate the resultant velocity of the stone - The magnitude of the resultant velocity \( V \) can be calculated using the Pythagorean theorem: \[ V = \sqrt{V_x^2 + V_y^2 + V_z^2} \] Substituting the values: \[ V = \sqrt{(4)^2 + (3)^2 + (3\sqrt{3})^2} \] \[ V = \sqrt{16 + 9 + 27} = \sqrt{52} = 2\sqrt{13} \, \text{m/s} \] ### Step 5: Determine the velocity at the highest point - At the highest point of its trajectory, the vertical component of the velocity (z-direction) will be zero due to gravity acting on the stone. - The horizontal components will remain unchanged: - \( V_x = 4 \, \text{m/s} \) - \( V_y = 3 \, \text{m/s} \) ### Step 6: Calculate the speed at the highest point - The speed at the highest point can be calculated as: \[ V_{top} = \sqrt{V_x^2 + V_y^2} \] Substituting the values: \[ V_{top} = \sqrt{(4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \, \text{m/s} \] ### Final Result - The resultant speed of the stone with respect to an observer on the ground is \( 2\sqrt{13} \, \text{m/s} \). - The speed of the stone at the highest point is \( 5 \, \text{m/s} \).

To solve the problem, we need to analyze the motion of the stone thrown from the cart in the context of different reference frames. Here's a step-by-step breakdown of the solution: ### Step 1: Understand the motion of the cart and the stone - The cart is moving in the positive x-direction with a velocity of \( V_c = 4 \, \text{m/s} \). - The stone is thrown by a person on the cart with a velocity of \( V_s = 6 \, \text{m/s} \) relative to the cart. ### Step 2: Analyze the angle of projection - The stone is thrown in the y-z plane, making an angle of \( 30^\circ \) with the vertical z-axis. ...
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    FIITJEE|Exercise Comprehension (I)|3 Videos
  • KINEMATICS

    FIITJEE|Exercise Comprehension (II)|2 Videos
  • KINEMATICS

    FIITJEE|Exercise Problem (subjective)|10 Videos
  • HEAT AND TEMPERATURE

    FIITJEE|Exercise NUMERICAL BASES QUESTIONS|1 Videos
  • LAWS OF MOTION

    FIITJEE|Exercise COMPREHENSION-III|2 Videos

Similar Questions

Explore conceptually related problems

A cart is moving along +x direction with a velocityof 4 m//s . A person on the cart throws a stone with a velocity of 6 m//s relative to himself. In the frame of reference of the cart the stone is thrown in y-z plane making an angle of 30^@ with vertical z-axis. At the highest point of its trajectory, the stone hits an object of equal mass hung vertically from the branch of a tree by means of a string of length L. A completely inelastic collision occurs, in which the stone gets embedded in the object. Determine : (i) The speed of the combined mass immediately after the collision with respect to an observer on the ground, (ii) The length L of the string such that the tension in the string becomes zero when the string becomes horizontal during the subsequent motion of the combined mass.

An object is moving towards a stationary plane mirror wiyh a speed of 2 m/s. Velocity of the image w.r.t. the object is

An open lift is coming down from the top of building at a constant speed v=10m//s . A boy standing on the lift throws a stone vertically upwards at a speed of 30 m/s w.r.t. himself. The time after which he will catch the stone is:

A man 'A' moves in north direction with speed 10m/s and another man B moves in E-30^(@)-N with 10 m//s . Find the relative velocity of B w.r.t. A.

A boy is standing on a cart moving along x -axis with the speed of 10 m//s . When the cart reaches the origin he throws a stone in the horizontal x-y plane, with the speed of 5 m//s with respect to himself at an angle theta with the x -axis. It is found that the stone hits a ball lying at rest at a point whose co-ordinates are (sqrt(3)m, 1m) . The value of theta=40^(@)xxC is (gravitational effect is to be ignored). Find the value of C .

An object A is kept fixed at the point x= 3 m and y = 1.25 m on a plank p raised above the ground . At time t = 0 the plank starts moving along the +x direction with an acceleration 1.5 m//s^(2) . At the same instant a stone is projected from the origin with a velocity vec(u) as shown . A stationary person on the ground observes the stone hitting the object during its downward motion at an angle 45^@ to the horizontal . All the motions are in the X -Y plane . Find vec(u) and the time after which the stone hits the object . Take g = 10 m//s

A river is flowing wih velocity 2 m//s . A boat is moving downstream. Velocity of boat in still water is 3 m//s . A person standing on boat throws a ball vertically upwards w.r.t. himself with a velocity to 10 m//s . At the topmost point the velocity of ball w.r.t. man standing on boat, w.r.t. river and w.r.t. ground respectively are

A boy of height 1.5 m , making move on a skateboard due east with velocity 4 m s^-1 , throws a coin vertically up a velocity of 3 m s^-1 relative to himself. (a) Find the total displacement of the coin relative to ground till it comes to the hand of the boy. (b) What isthe maximum height attained by the coin w.r.t. to ground ?

A straight conductor of length 4 m moves at a speed of 10 m/s when the conductor makes an angle of 30^(@) with the direction of magnetic induction 0.1 T. then the induced emf is

Momentum is the ability of imparting or tending to motion to other bodies. The total momentum of a system remains conserved if no external force is acting it. This is calculated by the formula, vecp=mvecv . Consider a situation where a cart carrying five boys is moving without friction due to inertia along a straight horizontal road, with a speed of 10m//s . After travelling certain distance, a boy jumps from the cart with a speed of 2m//s with respect to the cart in opposite direction to it. Then, second boy jumps with the same speed w.r.t. the cart, but in a perpendicular direction to the cart. The mass of the cart is 100 kg and mass of each boy is 20 kg. The speed of the cart after second boy jumps will