Home
Class 12
PHYSICS
A paricle of mass m moves along a circle...

A paricle of mass m moves along a circle of radius R with a normal acceleration varying with time as `w_n=at^2`, where a is a constant. Find the time dependence of the power developed by all the forces acting on the particle, and the mean value of this power averaged over the first t seconds after the beginning of motion.

Text Solution

Verified by Experts

The correct Answer is:
`P="mRat", ltP gt =("mRat")/(2)`
Promotional Banner

Topper's Solved these Questions

  • WORK, ENERGY AND POWER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( OBJECTIVE) (LEVEL-I)|36 Videos
  • WORK, ENERGY AND POWER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( OBJECTIVE) (LEVEL-I) (ASSERTION REASONING TYPE)|2 Videos
  • WORK, ENERGY AND POWER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( SUBJECTIVE) (LEVEL-I) Numerical|8 Videos
  • TEST PAPERS

    FIITJEE|Exercise PHYSICS|747 Videos

Similar Questions

Explore conceptually related problems

A particle of mass m moves along a circle of radius R with a normal acceleration varying with time as a_(N)=kt^(2) where k is a constant. Find the time dependence of power developed by all the forces acting on the particle and the mean value of this power averaged over the first t seconds after the beginning of the motion.

A particle of mass m moves along a circle of radius R with a normal acceleration varying with time as a_(n) = bt^(2) , where b is a constant. Find the time dependence of the power developed by all the forces acting on the particle, and the mean value of this power averaged over the first 2 seconds after the beginning of motion, (m = 1,v = 2,r = 1) .

A particle of mass m moves along a circular path of radius r with a centripetal acceleration a_n changing with time t as a_n=kt^2 , where k is a positive constant. The average power developed by all the forces acting on the particle during the first t_0 seconds is

A particle of mass m impves along a horzontal circle of radius R such that normal acceleration of particle varies with time as a_(n)=kt^(2). where k is a constant. Power developed by total at time t is

A particle of mass m impves along a horzontal circle of radius R such that normal acceleration of particle varies with time as a_(n)=kt^(2). where k is a constant. Tangential force on particle at t s is

A particle of mass m impves along a horzontal circle of radius R such that normal acceleration of particle varies with time as a_(n)=kt^(2). where k is a constant. Total force on particle at time t s is

A particle of mass m is moving along a circle of radius r with a time period T . Its angular momentum is

A particle of mass M is moving in a circle of fixedradius R in such a way that its centripetal accelerationn at time t is given by n^2Rt^2 where n is a constant. The power delivered to the particle by the force acting on it, it :

A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration ac is varying with time t as a_c = k^2rt^2 , where k is a constant. Calculate the power delivered to the particle by the force acting on it.