Home
Class 12
MATHS
Let f(x)=inte^x(x-1)(x-2)dxdot Then f...

Let `f(x)=inte^x(x-1)(x-2)dxdot` Then `f` decreases in the interval (a)`(-oo,-2)` (b) `-2,-1)` (c)`(1,2)` (d) `(2,+oo)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =inte^x(x-1)(x-2)dx, then f(x) decrease in the interval

The function f(x)=cot^(-1)x+x increases in the interval (a)(1,oo)(b)(-1,oo)(c)(-oo,oo)(d)(0,oo)

The function f(x)=(1)/(1+x^(2)) is decreasing in the interval (i)(-oo,-1)(ii)(-oo,0)(iii)(1,oo)(iv)(0,oo)

Show that f(x)=(1)/(1+x^(2)) decreases in the interval [0,oo) and increases in the interval (-oo,0].

Show that f(x)=(1)/(1+x^(2)) decreases in the interval [0,oo) and increases in the interval (-oo,0].

If the function f(x)=2x^(2)-kx+5 is increasing on [1,2], then k lies in the interval (a) (-oo,4)(b)(4,oo)(c)(-oo,8)(d)(8,oo)

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt, then f(x) increases in (0,2)(b) no value of x(0,oo)(d)(-oo,0)

Let f(x)=x+3ln(x-2)&g(x)=x+5ln(x-1) then the set of x satisfying the inequality f'(x)

The interval of increase of the function f(x)=x-e^(x)+tan(2 pi/7) is (a) (0,oo)(b)(-oo,0)(c)(1,oo)(d)(-oo,1)