Home
Class 12
MATHS
The value of int0^((3pi)/2)(|tan^(-1)tan...

The value of `int_0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)tanx|+|sin^(-1)sinx|)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^((3pi)/2)(|tan^(-1)(tanx)|-|sin^(-1)(sinx)|)/(|tan^(-1)(tanx)|+|sin^(-1)(sinx)|)dx is equal to

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

Evaluate: int_0^(pi/2) (sin2x tan^(-1)(sinx))dx

Evaluate: int_0^(pi/2) (sin2x tan^(-1)(sinx))dx

The value of I=int_((pi)/(2))^((5pi)/(2))(e^(tan^(-1))(sinx))/(e^(tan^(-1))(sinx)+e^(tan^(-1))(cosx))dx , is

int_0^(pi//2)(dx)/(1 + tanx) =