Home
Class 12
MATHS
If w is a complex cube root of unity, th...

If `w` is a complex cube root of unity, then value of `=|a_1+b_1w a_1w^2+b_1c_1+b_1 w a_2+b_2w a_2w^2+b_2c_2+b_2 w a_3+b_3w a_3w^2+b_3c_3+b_3 w |` is a. 0 b. `-1` c. `2` d. none of these

Answer

Step by step text solution for If w is a complex cube root of unity, then value of =|a_1+b_1w a_1w^2+b_1c_1+b_1 w a_2+b_2w a_2w^2+b_2c_2+b_2 w a_3+b_3w a_3w^2+b_3c_3+b_3 w | is a. 0 b. -1 c. 2 d. none of these by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If omega be a complex cube root of unity then the value of (1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega) is

If w is a non real cube root of unity, then minimum value of | a+ bw + c w^2|is ( If a,b,c are not equal): (A) 0 (B) (sqrt3)/2 (C) 1 (D) 2

Knowledge Check

  • If omega complex cube root of unity, then ((1 + omega )/(omega ^(2)))^(3) =

    A
    1
    B
    `-1`
    C
    `omega`
    D
    `omega^(2)`
  • if w is a complex cube root to unity then value of Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}| is

    A
    0
    B
    -1
    C
    2
    D
    none of these
  • If omega is complex cube root of unity, then the value of (1 + 2 omega )^(-1) + (2 + omega )^(-1) - (1 + omega ) ^(-1) =

    A
    2
    B
    1
    C
    0
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    If omega is a complex cube root of unity then the value of determinant |[2,2 omega,-omega^(2)],[1,1,1],[1,-1,0]|= a) 0 b) 1 c) -1 d) 2

    If 1,w,w^(2) are the cube roots of unity then (1)/(1+w^2)+(2)/(1+w)-(3)/(w^2+w)=

    If omega is a complex cube root of unity, then value of Delta=|(a_(1)+b_(1)omega, a_(1)omega^(2)+b_(1),c_(1)+b_(1)omega),(a_(2)+b_(2)omega,a_(2)omega^(2)+b_(2),c_(2)+b_(2)omega),(a_(3)+b_(3)omega,a_(3)omega^(2)+b_(3),c_(3)+b_(3)omega)| is

    1 , omega , omega ^(2) are the cube roots of unity, then the value of (1 + omega )^(3) - (1+ omega ^(2))^(3) is

    If omega is a non-real cube root of unity, then Delta = |(a_(1) + b_(1) omega,a_(1) omega^(2) + b_(1),a_(1) + b_(1) + c_(1) omega^(2)),(a_(2) + b_(2) omega,a_(2) omega^(2) + b_(2),a_(2) + b_(2) omega + c_(2) omega^(2)),(a_(3) + b_(3) omega,a_(3) omega^(2) + b_(3),a_(3) + b_(3) omega + c_(3) omega^(2))| is equal to