Home
Class 9
MATHS
If a^x=b^y=c^z\ a n d\ b^2=a c , prove t...

If `a^x=b^y=c^z\ a n d\ b^2=a c ,` prove that `y=(2x z)/(x+z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

If x+z = 2y " and " b^2 = ac , then prove that a^(y-z)*b^(z-x)*c^(x-y) =1 .

if a,b,c are in G.P. and a^(x)=b^(y)=c^(z) prove that (1)/(x)+(1)/(z)=(2)/(y)

If in A B C , the distances of the vertices from the orthocentre are x, y, and z, then prove that a/x+b/y+c/z=(a b c)/(x y z)

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot

If x : a = y : b = z : c , then prove that x^(3)/a^(2) + y^(3)/b^(2) + z^(3)/c^(2) = ((x+y+z)^(3))/((a+b+c)^(2))

If x : a = y : b = z : c , then prove that (a^(2) + b^(2) + c^(2))(x^(2) + y^(2) + z^(2)) = (ax + by + cz)^(2)