Home
Class 11
MATHS
(2sin(A-C)cos C-sin(A-2C))/(2sin(B-C)cos...

(2sin(A-C)cos C-sin(A-2C))/(2sin(B-C)cos C-sin(B-2C))=(sin A)/(sin B)

Promotional Banner

Similar Questions

Explore conceptually related problems

(2sin (AC) cos C-sin (A-2C)) / (2sin (BC) cos C-sin (B-2C)) = (sin A) / (sin B)

(2sin (AC) cos C-sin (A-2C)) / (2sin (BC) cos C-sin (B-2C)) = (sin A) / (sin B)

Prove that: (sin(A-C)+2sin A+sin(A+C))/(sin(B-C)+2sin B+sin(B+C))=(sin A)/(sin B)

Prove that: (cos(A+B+C)+cos(-A+B+C)+cos(A-B+C)+cos(A+B-C))/(sin(A+B+C)+sin(-A+B+C)+sin(A-B+C)-sin(A+B-C))=

(cos A)/(sin B sin C)+(cos B)/(sin C sin A)+(cos C)/(sin A sin B)=2

(cos(-A+B+C)+cos(A-B+C)+cos(A+B-C)+cos(A+B+C))/(sin(-A+B+C)-sin(A-B+C)+sin(A+B-C)+sin(A+B+C))=cot B

Prove that: (cos(A+B+C)+cos(-A+B+C)+cos(A-B+C)+"cos"(A+B-C))/(sin(A+B+C)+sin(-A+B+C)+sin(A-B+C)-"sin"(A+B-C))=cot C

In any Delta ABC, prove that :(a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

Prove that (a^(2)sin(B-C))/(sin b+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0