Home
Class 12
MATHS
Show that: |a b-cc+b a+c b c-a a-bb+a c|...

Show that: `|a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

det[[ Show that a,b-c,c+ba+c,b,c-aa-b,b+a,c]]=(a+b+c)(a^(2)+b^(2)+c^(2))

Prove that |[a,b-c,c+b],[a+c,b,c-a],[a-b,a+b,c]|=(a+b+c)(a^2+b^2+c^2)

Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)+c^(2)) .

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

If x+y+z=0 prove that |a x b y c z c y a z b x b z c x a y|=x y z|a b cc a bb c a|

3. Using properties of determinants, show that :|[b+c,a,b] , [c+a,c,a] , [a+b,b,c]| = (a + b + c) (a-c)^2

Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+c^(2))

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .