Home
Class 12
MATHS
Solve the inequality x[x]-x^(3)-3[x]+3xg...

Solve the inequality `x[x]-x^(3)-3[x]+3xgt0` where [.] denote greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x[\text{x}] - x^3 - 3[\text{x}] + 3x > 0 \), where \([\text{x}]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Rewrite the inequality We start by rewriting the inequality: \[ x[\text{x}] - x^3 - 3[\text{x}] + 3x > 0 \] This can be rearranged as: \[ x[\text{x}] + 3x - 3[\text{x}] - x^3 > 0 \] ### Step 2: Factor out common terms We can group the terms involving \([\text{x}]\): \[ [\text{x}](x - 3) + 3x - x^3 > 0 \] ### Step 3: Isolate \([\text{x}]\) Now we isolate \([\text{x}]\): \[ [\text{x}] > \frac{x^3 - 3x}{x - 3} \] ### Step 4: Define the function Let’s define the function: \[ f(x) = \frac{x^3 - 3x}{x - 3} \] This function is undefined at \(x = 3\). ### Step 5: Find the critical points To find the critical points of \(f(x)\), we set the numerator equal to zero: \[ x^3 - 3x = 0 \implies x(x^2 - 3) = 0 \] This gives us the critical points: \[ x = 0, \quad x = \sqrt{3}, \quad x = -\sqrt{3} \] ### Step 6: Analyze the intervals We need to analyze the sign of \(f(x)\) in the intervals determined by the critical points: 1. \( (-\infty, -\sqrt{3}) \) 2. \( (-\sqrt{3}, 0) \) 3. \( (0, \sqrt{3}) \) 4. \( (\sqrt{3}, 3) \) 5. \( (3, \infty) \) ### Step 7: Test points in each interval - For \(x < -\sqrt{3}\), choose \(x = -2\): \[ f(-2) = \frac{(-2)^3 - 3(-2)}{-2 - 3} = \frac{-8 + 6}{-5} = \frac{-2}{-5} > 0 \] - For \(-\sqrt{3} < x < 0\), choose \(x = -1\): \[ f(-1) = \frac{(-1)^3 - 3(-1)}{-1 - 3} = \frac{-1 + 3}{-4} = \frac{2}{-4} < 0 \] - For \(0 < x < \sqrt{3}\), choose \(x = 1\): \[ f(1) = \frac{1^3 - 3(1)}{1 - 3} = \frac{1 - 3}{-2} = \frac{-2}{-2} > 0 \] - For \(\sqrt{3} < x < 3\), choose \(x = 2\): \[ f(2) = \frac{2^3 - 3(2)}{2 - 3} = \frac{8 - 6}{-1} = \frac{2}{-1} < 0 \] - For \(x > 3\), choose \(x = 4\): \[ f(4) = \frac{4^3 - 3(4)}{4 - 3} = \frac{64 - 12}{1} = 52 > 0 \] ### Step 8: Determine intervals where \(f(x) < [\text{x}]\) From the analysis: - \( (-\infty, -\sqrt{3}) \): \(f(x) > 0\) - \((- \sqrt{3}, 0)\): \(f(x) < 0\) - \((0, \sqrt{3})\): \(f(x) > 0\) - \((\sqrt{3}, 3)\): \(f(x) < 0\) - \((3, \infty)\): \(f(x) > 0\) ### Step 9: Combine results The inequality \( [\text{x}] > f(x) \) holds in the intervals: - \( (-\infty, -\sqrt{3}) \) - \( (0, \sqrt{3}) \) - \( (3, \infty) \) ### Final Solution Thus, the solution to the inequality \( x[\text{x}] - x^3 - 3[\text{x}] + 3x > 0 \) is: \[ x \in (-\infty, -\sqrt{3}) \cup (0, \sqrt{3}) \cup (3, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-I|24 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • FUNCTION

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|20 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

The set of values of x for which the inequality [x]^(2)-5[x]+6<=0( where [.] denotes greatest integer function)holds good is

If f(x)=[2x], where [.] denotes the greatest integer function,then

Solve in R: x^2+ 2[x] = 3x where [.] denotes greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

The complete solution set of the inequality [cot^(-1)x]^(2)-6[cot^(-1)x]+9<=0 where [1] denotes greatest integer function,is

Solve the equation [x]{x}=x, where [] and {} denote the greatest integer function and fractional part, respectively.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

FIITJEE-FUNCTION-EXERCISES
  1. Solve the following inequailities : abs(x-1)+2abs(x+1)+abs(x-2)le8

    Text Solution

    |

  2. Solve the following inequailities : 4abs(x^(2)-1)+abs(x^(2)-4)ge6

    Text Solution

    |

  3. Solve the inequality x[x]-x^(3)-3[x]+3xgt0 where [.] denote greatest i...

    Text Solution

    |

  4. Solve: [x]^3 - 2[x] +1 = 0,

    Text Solution

    |

  5. Solve the inequality [x]^2-3[x]+2lt=0.

    Text Solution

    |

  6. If y=3[x]+1=2[x-3]+5, find the value of [x+y]

    Text Solution

    |

  7. Find the domain of following functions: f(x)=1/(sqrt(abs(x)-x^(2)))

    Text Solution

    |

  8. Find the domain of following functions: f(x)=1/(sqrt(x-[x]))

    Text Solution

    |

  9. Find the range of f(x)=x^(2)-3x+2,0lexle4

    Text Solution

    |

  10. Find the range of f(x)=abs(sinx)+abs(cosx)0lexlepi

    Text Solution

    |

  11. The range of the function sin^2x-5sinx -6 is

    Text Solution

    |

  12. Find the domain and range of f(x)=log(1/sqrt([cosx]-[sinx])). [.] deno...

    Text Solution

    |

  13. Find the domain of the function f(x)=3/([x/2])-5^(cos^(-1)x^(2))+( (2x...

    Text Solution

    |

  14. Let f(x)=abs(sinx),0lexlepi and g(x)=abs(cosx)-pi//2lexlepi//2. Find f...

    Text Solution

    |

  15. If f(x)={{:(x^(2),xle0),(x,xgt0):} and g(x)=-absx,x inR, then find fog...

    Text Solution

    |

  16. State the following function is one-one or not and why? f:RtoR defin...

    Text Solution

    |

  17. State which of the following functions are one-one and why? f:R^(+)t...

    Text Solution

    |

  18. State which of the following functions are one-one and why? f:R.{1}t...

    Text Solution

    |

  19. State which of the following function are onto and why? f:RtoR defin...

    Text Solution

    |

  20. State which of the following function are onto and why? f:R^(+)toR d...

    Text Solution

    |