Home
Class 12
MATHS
Is the function f(x)=sqrt(sinx) periodic...

Is the function f(x)`=sqrt(sinx)` periodic?

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the function \( f(x) = \sqrt{\sin x} \) is periodic, we need to check if there exists a positive number \( T \) such that \( f(x + T) = f(x) \) for all \( x \). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function \( f(x) = \sqrt{\sin x} \). 2. **Check the Condition for Periodicity**: A function \( f(x) \) is periodic if there exists a period \( T \) such that: \[ f(x + T) = f(x) \quad \text{for all } x. \] 3. **Assume a Period \( T \)**: Let's assume \( T \) is the period. Then we have: \[ f(x + T) = \sqrt{\sin(x + T)}. \] 4. **Use the Sine Addition Formula**: We can use the sine addition formula: \[ \sin(x + T) = \sin x \cos T + \cos x \sin T. \] Therefore, \[ f(x + T) = \sqrt{\sin x \cos T + \cos x \sin T}. \] 5. **Set Up the Equation**: For \( f(x + T) \) to equal \( f(x) \), we need: \[ \sqrt{\sin x \cos T + \cos x \sin T} = \sqrt{\sin x}. \] 6. **Square Both Sides**: Squaring both sides gives: \[ \sin x \cos T + \cos x \sin T = \sin x. \] 7. **Rearranging the Equation**: Rearranging this equation leads to: \[ \sin x \cos T + \cos x \sin T - \sin x = 0. \] This simplifies to: \[ \sin x (\cos T - 1) + \cos x \sin T = 0. \] 8. **Analyzing the Equation**: For this equation to hold for all \( x \), both coefficients must be zero: - \( \cos T - 1 = 0 \) implies \( \cos T = 1 \) (which occurs at \( T = 2n\pi \) for \( n \in \mathbb{Z} \)). - \( \sin T = 0 \) implies \( T = n\pi \) for \( n \in \mathbb{Z} \). 9. **Finding the Minimum Period**: The smallest positive \( T \) that satisfies both conditions is \( T = 2\pi \). 10. **Conclusion**: Since we found a positive \( T \) such that \( f(x + T) = f(x) \), we conclude that the function \( f(x) = \sqrt{\sin x} \) is periodic with a period of \( 2\pi \). ### Final Answer: The function \( f(x) = \sqrt{\sin x} \) is periodic with a period of \( 2\pi \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-I|24 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • FUNCTION

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|20 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

Prove that function f(x)=cos sqrt(x) is non-periodic.

The period of the function f(x)=sin sqrt(x) is

Knowledge Check

  • The function f(x)=x+sinx has

    A
    a minimum but no maximum
    B
    a maximu but no minimum
    C
    neither maximum nor minimum
    D
    both maximum and minimum
  • Domain of the function f(x) = sqrt(1/(sinx)-1) is

    A
    `U_(n in 1) (2npi, 2npi+pi/2)`
    B
    `U_(n in 1) (2npi, (2n+1)pi]`
    C
    `U_(n in 1) [(2n-1)pi, 2npi]`
    D
    None of the above
  • The domain of the function f(x) = sqrt(sinx) + sqrt(16-x^(2)) is

    A
    `[-4,0) cup (0,pi]`
    B
    `(-4,4)`
    C
    `[-4,pi] cup [0,pi]`
    D
    `[-4,pi]`
  • Similar Questions

    Explore conceptually related problems

    The domain of the function, f(x)= sqrt(sinx)/sqrt((x-2)(8-x)) is

    The domain of the function f(x)=sqrt( log_(2) sinx ) , is

    The function f(x) =1+|sinx| is

    The function f(x)=sin^(-1)(sinx) , is

    Fundamental period of the function f(x) = cos (sinx) + cos(cosx) is :