Home
Class 12
MATHS
Find the range of the following functio...

Find the range of the following functions:
`f(x)=[ln(sin^(-1)sqrt(x^(2)+x+1))]` [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \lfloor \ln(\sin^{-1}(\sqrt{x^2 + x + 1})) \rfloor \), we will follow these steps: ### Step 1: Analyze the expression inside the logarithm The function involves \( \sin^{-1}(\sqrt{x^2 + x + 1}) \). First, we need to determine the range of \( \sqrt{x^2 + x + 1} \). ### Step 2: Find the minimum value of \( x^2 + x + 1 \) The expression \( x^2 + x + 1 \) is a quadratic function. To find its minimum value, we can complete the square or use the vertex formula. The vertex \( x \) of a quadratic \( ax^2 + bx + c \) is given by \( x = -\frac{b}{2a} \). Here, \( a = 1 \), \( b = 1 \), and \( c = 1 \): \[ x = -\frac{1}{2 \cdot 1} = -\frac{1}{2} \] Now substituting \( x = -\frac{1}{2} \) into the quadratic: \[ x^2 + x + 1 = \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) + 1 = \frac{1}{4} - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] ### Step 3: Determine the range of \( \sqrt{x^2 + x + 1} \) Since \( x^2 + x + 1 \) has a minimum value of \( \frac{3}{4} \) and tends to infinity as \( x \) goes to \( \pm \infty \), the range of \( \sqrt{x^2 + x + 1} \) is: \[ \left[\sqrt{\frac{3}{4}}, \infty\right) = \left[\frac{\sqrt{3}}{2}, \infty\right) \] ### Step 4: Find the range of \( \sin^{-1}(\sqrt{x^2 + x + 1}) \) The function \( \sin^{-1}(y) \) is defined for \( y \) in the range \( [-1, 1] \). Since \( \sqrt{x^2 + x + 1} \) is always greater than or equal to \( \frac{\sqrt{3}}{2} \), we need to check if \( \frac{\sqrt{3}}{2} \) is within the domain of \( \sin^{-1} \). Calculating \( \sin^{-1}(\frac{\sqrt{3}}{2}) \): \[ \sin^{-1}(\frac{\sqrt{3}}{2}) = \frac{\pi}{3} \] As \( \sqrt{x^2 + x + 1} \) approaches infinity, \( \sin^{-1}(y) \) approaches \( \frac{\pi}{2} \). Thus, the range of \( \sin^{-1}(\sqrt{x^2 + x + 1}) \) is: \[ \left[\frac{\pi}{3}, \frac{\pi}{2}\right) \] ### Step 5: Find the range of \( \ln(\sin^{-1}(\sqrt{x^2 + x + 1})) \) Now we take the natural logarithm of the range: - The minimum value is \( \ln\left(\frac{\pi}{3}\right) \). - The maximum value approaches \( \ln\left(\frac{\pi}{2}\right) \) as \( x \) approaches infinity. ### Step 6: Apply the greatest integer function The final step is to apply the greatest integer function \( \lfloor \cdot \rfloor \) to the range \( \left[\ln\left(\frac{\pi}{3}\right), \ln\left(\frac{\pi}{2}\right)\right) \). Calculating the approximate values: - \( \frac{\pi}{3} \approx 1.047 \) so \( \ln\left(\frac{\pi}{3}\right) \approx \ln(1.047) \approx 0.046 \) - \( \frac{\pi}{2} \approx 1.570 \) so \( \ln\left(\frac{\pi}{2}\right) \approx \ln(1.570) \approx 0.451 \) Thus, the range of \( f(x) \) is: \[ \lfloor \ln\left(\frac{\pi}{3}\right) \rfloor \text{ to } \lfloor \ln\left(\frac{\pi}{2}\right) \rfloor = 0 \] ### Final Answer The range of \( f(x) \) is \( \{0\} \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • FUNCTION

    FIITJEE|Exercise EXERCISES|43 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of the following function: f(x)=cos^(-1)sqrt(log_([x])(|x|)/x) , whre [.] denotes the greatest integer function.

Find the range of the following functions: f(x)=(e^(x))/(1+absx),xge0 [.] denotes the greatest integer function.

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

The function f (x)=[sqrt(1-sqrt(1-x ^(2)))], (where [.] denotes greatest integer function):

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

Find the range of the following function: f(x)=ln(x-[x]), where [.] denotes the greatest integer function

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-I
  1. Find the range of the following functions: y = 2 + sinx

    Text Solution

    |

  2. Find the range of the following functions: y=1/(2-cos3x)

    Text Solution

    |

  3. Find the range of log3{log(1/2)(x^2+4x+4)}

    Text Solution

    |

  4. Find the range of the following functions: y=sqrt(6-x)+2sqrt(x-4)

    Text Solution

    |

  5. Find the range of the following functions: f(x)=(e^(x))/(1+absx),xg...

    Text Solution

    |

  6. Find the range of the following functions: f(x)=[ln(sin^(-1)sqrt(x^...

    Text Solution

    |

  7. Find the period f(x)=sinx+{x}, where {x} is the fractional part of xdo...

    Text Solution

    |

  8. Find the period of the following, if exists: f(x) = tan3x + sin(x/3)

    Text Solution

    |

  9. Find the period of the following, if exists: f(x)=e^(3"in"e^(x)-[3x]...

    Text Solution

    |

  10. Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):}and g(x)={(x-3","...

    Text Solution

    |

  11. A function defined for all real numbers is defined for x>-0 as follows...

    Text Solution

    |

  12. Let f(x)={{:(1+x,0lexle1).(3-x,1ltxltoo):} Define f(f(x)). AIso obta...

    Text Solution

    |

  13. Find the domain of the function, f(x)=log{log(abs(sinx)){x^(2)-8x+23...

    Text Solution

    |

  14. Prove that function f(x)=cos sqrt(x) is non-periodic.

    Text Solution

    |

  15. If f is symmetrical about x = 1, find the real values of x satisfying ...

    Text Solution

    |

  16. If f(x) is an even function and satisfies the relation x^(2)f(x)-2f(1/...

    Text Solution

    |

  17. let f(x) be a polynomial satisfying f(x) : f(1/x) = f(x) + f(1/x) for ...

    Text Solution

    |

  18. Let n be a positive integer with f(n) = 1! + 2! + 3!+.........+n! and ...

    Text Solution

    |

  19. Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the gr...

    Text Solution

    |

  20. Let f(x)=(2cosx-1)(2cos2x-1)(2cos2^2x-1)(2cos2^n x-1), (where ngeq1)do...

    Text Solution

    |