Home
Class 12
MATHS
Let f(x)={{:(1+x,0lexle1).(3-x,1ltxltoo)...

Let `f(x)={{:(1+x,0lexle1).(3-x,1ltxltoo):}`
Define f(f(x)). AIso obtain domain and range of f(f(x)).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(f(x)) \) for the given piecewise function \( f(x) \): \[ f(x) = \begin{cases} 1 + x & \text{for } 0 \leq x \leq 1 \\ 3 - x & \text{for } 1 < x < \infty \end{cases} \] ### Step 1: Determine the output of \( f(x) \) 1. For \( 0 \leq x \leq 1 \): - Here, \( f(x) = 1 + x \). - The range of \( f(x) \) in this interval is from \( f(0) = 1 \) to \( f(1) = 2 \), so the output is \( [1, 2] \). 2. For \( 1 < x < \infty \): - Here, \( f(x) = 3 - x \). - As \( x \) approaches \( 1 \), \( f(x) \) approaches \( 2 \) and as \( x \) approaches infinity, \( f(x) \) approaches negative infinity. Thus, the output is \( (-\infty, 2) \). Combining both intervals, the range of \( f(x) \) is \( (-\infty, 2) \cup [1, 2] \). ### Step 2: Find \( f(f(x)) \) Now we need to evaluate \( f(f(x)) \) based on the output of \( f(x) \). 1. **Case 1**: If \( x \) is in \( [0, 1] \): - Then \( f(x) = 1 + x \) which lies in \( [1, 2] \). - Now we evaluate \( f(f(x)) \): - Since \( f(x) \) is in \( [1, 2] \), we use the second case of \( f(x) \): \[ f(f(x)) = f(1 + x) = 3 - (1 + x) = 2 - x \] - Therefore, for \( 0 \leq x \leq 1 \), \( f(f(x)) = 2 - x \). 2. **Case 2**: If \( x \) is in \( (1, \infty) \): - Then \( f(x) = 3 - x \). - We need to determine the value of \( 3 - x \): - For \( x > 3 \), \( 3 - x < 0 \) (which is outside the domain of \( f(x) \)). - For \( 1 < x < 3 \), \( 3 - x \) lies in \( (0, 2) \). - Thus, we evaluate \( f(f(x)) \): - Since \( f(x) = 3 - x \) is in \( (0, 2) \), we use the first case of \( f(x) \): \[ f(f(x)) = f(3 - x) = 1 + (3 - x) = 4 - x \] - Therefore, for \( 1 < x < 3 \), \( f(f(x)) = 4 - x \). ### Step 3: Combine results Now we can summarize the results for \( f(f(x)) \): \[ f(f(x)) = \begin{cases} 2 - x & \text{for } 0 \leq x \leq 1 \\ 4 - x & \text{for } 1 < x < 3 \end{cases} \] ### Step 4: Determine the domain and range of \( f(f(x)) \) - **Domain**: The domain of \( f(f(x)) \) is \( [0, 3) \) since \( f(x) \) must be valid for all \( x \) in the original function. - **Range**: - For \( 0 \leq x \leq 1 \), \( f(f(x)) = 2 - x \) ranges from \( 2 \) to \( 1 \). - For \( 1 < x < 3 \), \( f(f(x)) = 4 - x \) ranges from \( 3 \) to \( 1 \). Combining these, the overall range is \( (1, 2] \). ### Final Answer \[ f(f(x)) = \begin{cases} 2 - x & \text{for } 0 \leq x \leq 1 \\ 4 - x & \text{for } 1 < x < 3 \end{cases} \] - **Domain of \( f(f(x)) \)**: \( [0, 3) \) - **Range of \( f(f(x)) \)**: \( (1, 2] \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • FUNCTION

    FIITJEE|Exercise EXERCISES|43 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=|x-1|

f(x)={x+1,x =0 and g(x)={x^(3),x =1 Then find f(g(x)) and find its domain and range.

If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity fo f(f(x)) is [0,2] is,

Let f(x)=(1)/(1+|x|) ; x in R the range of f is

Let f(x) = {{:(x^(2)/2", "0 lexlt1),(2x^(2)-3x+3/2", "1lexle2):} Discuss the continuity of f, f' and f'' on [0, 2].

IF f(x)=x,-1lexle1 , then function f(x) is

The function f(x) is defined in [0,1] . Find the domain of f(tanx).

If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

Let f:RtoR be defined by f(x)=x/(1+x^2),x inR . Then the range of f is

If f(x) is defined on (0,1], then the domain of f(sin x) is

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-I
  1. Find the range of the following functions: y = 2 + sinx

    Text Solution

    |

  2. Find the range of the following functions: y=1/(2-cos3x)

    Text Solution

    |

  3. Find the range of log3{log(1/2)(x^2+4x+4)}

    Text Solution

    |

  4. Find the range of the following functions: y=sqrt(6-x)+2sqrt(x-4)

    Text Solution

    |

  5. Find the range of the following functions: f(x)=(e^(x))/(1+absx),xg...

    Text Solution

    |

  6. Find the range of the following functions: f(x)=[ln(sin^(-1)sqrt(x^...

    Text Solution

    |

  7. Find the period f(x)=sinx+{x}, where {x} is the fractional part of xdo...

    Text Solution

    |

  8. Find the period of the following, if exists: f(x) = tan3x + sin(x/3)

    Text Solution

    |

  9. Find the period of the following, if exists: f(x)=e^(3"in"e^(x)-[3x]...

    Text Solution

    |

  10. Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):}and g(x)={(x-3","...

    Text Solution

    |

  11. A function defined for all real numbers is defined for x>-0 as follows...

    Text Solution

    |

  12. Let f(x)={{:(1+x,0lexle1).(3-x,1ltxltoo):} Define f(f(x)). AIso obta...

    Text Solution

    |

  13. Find the domain of the function, f(x)=log{log(abs(sinx)){x^(2)-8x+23...

    Text Solution

    |

  14. Prove that function f(x)=cos sqrt(x) is non-periodic.

    Text Solution

    |

  15. If f is symmetrical about x = 1, find the real values of x satisfying ...

    Text Solution

    |

  16. If f(x) is an even function and satisfies the relation x^(2)f(x)-2f(1/...

    Text Solution

    |

  17. let f(x) be a polynomial satisfying f(x) : f(1/x) = f(x) + f(1/x) for ...

    Text Solution

    |

  18. Let n be a positive integer with f(n) = 1! + 2! + 3!+.........+n! and ...

    Text Solution

    |

  19. Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the gr...

    Text Solution

    |

  20. Let f(x)=(2cosx-1)(2cos2x-1)(2cos2^2x-1)(2cos2^n x-1), (where ngeq1)do...

    Text Solution

    |