Home
Class 12
MATHS
Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1...

Let `f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2)` (where (.] denotes the greatest integer function) then find `f"(0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f''(0) \) for the function \[ f(x) = \frac{x(\sin x + \tan x)}{\left(\frac{x + \pi}{\pi}\right) - \frac{1}{2}} \] we will follow these steps: ### Step 1: Simplify the function at \( x = 0 \) First, we need to evaluate \( f(0) \): \[ f(0) = \frac{0(\sin 0 + \tan 0)}{\left(\frac{0 + \pi}{\pi}\right) - \frac{1}{2}} \] Calculating the numerator: \[ 0(\sin 0 + \tan 0) = 0 \] Now, calculating the denominator: \[ \frac{0 + \pi}{\pi} - \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2} \] Thus, \[ f(0) = \frac{0}{\frac{1}{2}} = 0 \] ### Step 2: Find the first derivative \( f'(x) \) To find \( f'(x) \), we will use the quotient rule: \[ f'(x) = \frac{g(x)h'(x) - h(x)g'(x)}{(h(x))^2} \] where \( g(x) = x(\sin x + \tan x) \) and \( h(x) = \left(\frac{x + \pi}{\pi}\right) - \frac{1}{2} \). Calculating \( h(x) \): \[ h(x) = \frac{x + \pi}{\pi} - \frac{1}{2} = \frac{x + \pi - \frac{\pi}{2}}{\pi} = \frac{x + \frac{\pi}{2}}{\pi} \] Now, calculate \( h'(x) \): \[ h'(x) = \frac{1}{\pi} \] Next, we need \( g'(x) \): Using the product rule: \[ g'(x) = (\sin x + \tan x) + x(\cos x + \sec^2 x) \] ### Step 3: Evaluate \( f'(0) \) Now substituting \( x = 0 \): \[ g(0) = 0(\sin 0 + \tan 0) = 0 \] \[ h(0) = \frac{0 + \frac{\pi}{2}}{\pi} = \frac{1}{2} \] Thus, \[ f'(0) = \frac{0 \cdot h'(0) - h(0) \cdot g'(0)}{(h(0))^2} \] Calculating \( g'(0) \): \[ g'(0) = (\sin 0 + \tan 0) + 0(\cos 0 + \sec^2 0) = 0 + 0 = 0 \] So, \[ f'(0) = \frac{0 - \frac{1}{2} \cdot 0}{\left(\frac{1}{2}\right)^2} = 0 \] ### Step 4: Find the second derivative \( f''(x) \) To find \( f''(x) \), we differentiate \( f'(x) \) again using the quotient rule. However, since \( f'(0) = 0 \), we can directly evaluate the limit to find \( f''(0) \). ### Step 5: Evaluate \( f''(0) \) Since both \( f(0) \) and \( f'(0) \) are zero, we can use L'Hôpital's rule to find \( f''(0) \): \[ f''(0) = \lim_{x \to 0} \frac{f'(x)}{x} \] As we have already established that \( f'(0) = 0 \), we differentiate \( f'(x) \) again and evaluate at \( x = 0 \). ### Final Result After evaluating the derivatives, we find: \[ f''(0) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • FUNCTION

    FIITJEE|Exercise EXERCISES|43 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Find whether the given function is even or odd: f(x)=x(sin x+tan x)/([(x+pi)/(pi)]-(1)/(2)); where square denotes the greatest integer function.

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-I
  1. Find the range of the following functions: y = 2 + sinx

    Text Solution

    |

  2. Find the range of the following functions: y=1/(2-cos3x)

    Text Solution

    |

  3. Find the range of log3{log(1/2)(x^2+4x+4)}

    Text Solution

    |

  4. Find the range of the following functions: y=sqrt(6-x)+2sqrt(x-4)

    Text Solution

    |

  5. Find the range of the following functions: f(x)=(e^(x))/(1+absx),xg...

    Text Solution

    |

  6. Find the range of the following functions: f(x)=[ln(sin^(-1)sqrt(x^...

    Text Solution

    |

  7. Find the period f(x)=sinx+{x}, where {x} is the fractional part of xdo...

    Text Solution

    |

  8. Find the period of the following, if exists: f(x) = tan3x + sin(x/3)

    Text Solution

    |

  9. Find the period of the following, if exists: f(x)=e^(3"in"e^(x)-[3x]...

    Text Solution

    |

  10. Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):}and g(x)={(x-3","...

    Text Solution

    |

  11. A function defined for all real numbers is defined for x>-0 as follows...

    Text Solution

    |

  12. Let f(x)={{:(1+x,0lexle1).(3-x,1ltxltoo):} Define f(f(x)). AIso obta...

    Text Solution

    |

  13. Find the domain of the function, f(x)=log{log(abs(sinx)){x^(2)-8x+23...

    Text Solution

    |

  14. Prove that function f(x)=cos sqrt(x) is non-periodic.

    Text Solution

    |

  15. If f is symmetrical about x = 1, find the real values of x satisfying ...

    Text Solution

    |

  16. If f(x) is an even function and satisfies the relation x^(2)f(x)-2f(1/...

    Text Solution

    |

  17. let f(x) be a polynomial satisfying f(x) : f(1/x) = f(x) + f(1/x) for ...

    Text Solution

    |

  18. Let n be a positive integer with f(n) = 1! + 2! + 3!+.........+n! and ...

    Text Solution

    |

  19. Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the gr...

    Text Solution

    |

  20. Let f(x)=(2cosx-1)(2cos2x-1)(2cos2^2x-1)(2cos2^n x-1), (where ngeq1)do...

    Text Solution

    |