Home
Class 12
MATHS
Let f(x)=sin((pi)/x) and D={x:f(x)gt0), ...

Let f(x)=`sin((pi)/x)` and `D={x:f(x)gt0)`, then D contains

A

`(1/3,1/2)`

B

`(1/5,1/4)`

C

`(-1,-1/2)`

D

`(-pi,-1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the domain \( D \) where the function \( f(x) = \sin\left(\frac{\pi}{x}\right) \) is greater than 0. ### Step-by-Step Solution: 1. **Understand the Function**: We have \( f(x) = \sin\left(\frac{\pi}{x}\right) \). The sine function is positive in certain intervals. Specifically, \( \sin(t) > 0 \) when \( t \) is in the intervals \( (2k\pi, (2k+1)\pi) \) for integers \( k \). 2. **Set the Condition**: We need to find when \( \sin\left(\frac{\pi}{x}\right) > 0 \). This implies: \[ \frac{\pi}{x} \in (2k\pi, (2k+1)\pi) \] for integers \( k \). 3. **Solve for \( x \)**: From the inequality \( 2k\pi < \frac{\pi}{x} < (2k+1)\pi \), we can multiply through by \( x \) (noting that \( x > 0 \)): \[ 2kx < \pi < (2k+1)x \] This gives us two inequalities: - From \( 2kx < \pi \): \[ x < \frac{\pi}{2k} \] - From \( \pi < (2k+1)x \): \[ x > \frac{\pi}{2k+1} \] 4. **Determine Valid Intervals**: Thus, we have: \[ \frac{\pi}{2k+1} < x < \frac{\pi}{2k} \] for each integer \( k \). 5. **Find Specific Intervals**: Let's calculate the intervals for different values of \( k \): - For \( k = 1 \): \[ \frac{\pi}{3} < x < \frac{\pi}{2} \] - For \( k = 2 \): \[ \frac{\pi}{5} < x < \frac{\pi}{4} \] - For \( k = 3 \): \[ \frac{\pi}{7} < x < \frac{\pi}{6} \] 6. **Combine Intervals**: The domain \( D \) where \( f(x) > 0 \) is the union of all these intervals: \[ D = \left( \frac{\pi}{3}, \frac{\pi}{2} \right) \cup \left( \frac{\pi}{5}, \frac{\pi}{4} \right) \cup \left( \frac{\pi}{7}, \frac{\pi}{6} \right) \cup \ldots \] ### Conclusion: The intervals where \( f(x) > 0 \) are: - \( \left( \frac{\pi}{3}, \frac{\pi}{2} \right) \) - \( \left( \frac{\pi}{5}, \frac{\pi}{4} \right) \) - \( \left( \frac{\pi}{7}, \frac{\pi}{6} \right) \) - and so on. Thus, \( D \) contains all \( x \) in these intervals.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise MATCH THE COLUMNS|6 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

Let f (x)=cos(pi/x) and D_+={x: f (x)>0} . Then D_+ contains (a) (2/5,1/2) (b) (1/2,2/3) (c) (2/3,-1/2) (d) (-pi,-1/2)

Let f(x)=sin((pi)/(x)) then find x if f(x)>0

Let f(x)=sin x and cg(x)={max{f(t),0 pi Then ,g(x) is

Let f(x)=sin x,g(x)={{max f(t),0 pi Then number of point in (0,oo) where f(x) is not differentiable is

Let f(x)=sin x,x =0 then

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

Let f(x)=sin((pi)/6sin((pi)/2 sin x)) for all x epsilonR and g(x)=(pi)/2sinx for all x epsilonR . Let (fog) (x) denote f(g(x)) and (g o f) denote g(f(x)). Then which the following is (are) true?

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II
  1. let f: A to A, where A is a set of non-negative integers and satisfyin...

    Text Solution

    |

  2. Let f(x) be a linear function which maps [-1, 1] onto [0, 2], then f(x...

    Text Solution

    |

  3. Let f(x)=sinx+ax+b.Then which of the following is/are true?

    Text Solution

    |

  4. The function f(x)=|x-1|/x^2 is

    Text Solution

    |

  5. Let f(x)=sin((pi)/x) and D={x:f(x)gt0), then D contains

    Text Solution

    |

  6. The function g, defined by g(x) = sinalpha + cosalpha - 1, alpha = sin...

    Text Solution

    |

  7. The graph of the equation y + abs(y) - x - absx = 0 is represented by ...

    Text Solution

    |

  8. if f(g(x)) is one-one function, then (1) g(x) must be one- one (2) f(x...

    Text Solution

    |

  9. Let functions f,g:RtoR defined by f(x)=3x-1+abs(2x-1),g(x)=1/5(3x+5-ab...

    Text Solution

    |

  10. If f: R to R, defined as f(x)=(sin([x]pi))/(x^(2)+x+1), where (x] is t...

    Text Solution

    |

  11. Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

    Text Solution

    |

  12. If f(x) = sinx + cos ax is a periodic function then a cannot be

    Text Solution

    |

  13. If [x] represents the greatest integer less than or equal to x, then w...

    Text Solution

    |

  14. If thetain[-(pi)/9,-(pi)/(36)] such that f(theta)=tan(theta+(5pi)/(18)...

    Text Solution

    |

  15. f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx, then f(x) is

    Text Solution

    |

  16. Let f be a real valued periodic function defined for all real umbers x...

    Text Solution

    |

  17. If f(x) is a polynomial of degree 4 with rational coefficients a...

    Text Solution

    |

  18. Let f(x) = ((x - gamma)(x - delta)) / ((x-alpha)(a-beta)) where, gamma...

    Text Solution

    |

  19. Let f(x) =x^(13)-2x^(12)+3x^(11)+…+13x+14 and alpha=cos(2pi)/15+sin(2p...

    Text Solution

    |

  20. Let y = 2cos(sin^(2)theta + sintheta + 2). If range of y is [a, b] and...

    Text Solution

    |