Home
Class 12
MATHS
The function g, defined by g(x) = sinalp...

The function g, defined by g(x) `= sinalpha + cosalpha - 1, alpha = sin^(-1) sqrt({x})` , {.} denotes fractional part function is

A

an even function

B

periodic function

C

odd function

D

neither even nor odd

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( g(x) = \sin(\alpha) + \cos(\alpha) - 1 \) where \( \alpha = \sin^{-1}(\sqrt{\{x\}}) \) and \(\{x\}\) denotes the fractional part of \(x\). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( g(x) \) is defined in terms of \( \alpha \), which is derived from the fractional part of \( x \). The fractional part function, denoted as \(\{x\}\), is defined as \( x - \lfloor x \rfloor \), where \(\lfloor x \rfloor\) is the greatest integer less than or equal to \( x \). 2. **Substituting \( \alpha \)**: We substitute \( \alpha \) into the function: \[ g(x) = \sin(\sin^{-1}(\sqrt{\{x\}})) + \cos(\sin^{-1}(\sqrt{\{x\}})) - 1 \] Using the identity \( \sin(\sin^{-1}(y)) = y \), we have: \[ g(x) = \sqrt{\{x\}} + \cos(\sin^{-1}(\sqrt{\{x\}})) - 1 \] 3. **Finding \( \cos(\sin^{-1}(y)) \)**: We can find \( \cos(\sin^{-1}(y)) \) using the Pythagorean identity: \[ \cos(\sin^{-1}(y)) = \sqrt{1 - y^2} \] Therefore, substituting \( y = \sqrt{\{x\}} \): \[ \cos(\sin^{-1}(\sqrt{\{x\}})) = \sqrt{1 - \{x\}} \] 4. **Final Expression for \( g(x) \)**: Now substituting back into the equation for \( g(x) \): \[ g(x) = \sqrt{\{x\}} + \sqrt{1 - \{x\}} - 1 \] 5. **Checking for Evenness**: To check if \( g(x) \) is even, we need to evaluate \( g(-x) \): \[ g(-x) = \sqrt{\{-x\}} + \sqrt{1 - \{-x\}} - 1 \] Since \(\{-x\} = 1 - \{x\}\) when \(x\) is not an integer, we can substitute: \[ g(-x) = \sqrt{1 - \{x\}} + \sqrt{\{x\}} - 1 = g(x) \] Thus, \( g(-x) = g(x) \), indicating that \( g(x) \) is an even function. 6. **Checking for Periodicity**: To check if \( g(x) \) is periodic, we evaluate \( g(x + t) \): \[ g(x + t) = \sqrt{\{x + t\}} + \sqrt{1 - \{x + t\}} - 1 \] If \( t \) is an integer, then \(\{x + t\} = \{x\}\). Therefore: \[ g(x + t) = \sqrt{\{x\}} + \sqrt{1 - \{x\}} - 1 = g(x) \] Hence, \( g(x) \) is periodic with period \( t \) being any integer. ### Conclusion: The function \( g(x) \) is an even function and is periodic with integer periods.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise MATCH THE COLUMNS|6 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1 (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.

If x in[2,3) ,then {x} equals, where {.} denotes fractional part function.

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function:

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

The value of int_(-1)^(2){2x}dx is (where function 0 denotes fractional part function)

Range of the function f(x)=cot^(-1){-x}+sin^(-1){x}+cos^(-1){x} , where {*} denotes fractional part function

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

Range of the function f defined by (x) =[(1)/(sin{x})] (where [.] and {x} denotes greatest integer and fractional part of x respectively) is

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II
  1. let f: A to A, where A is a set of non-negative integers and satisfyin...

    Text Solution

    |

  2. Let f(x) be a linear function which maps [-1, 1] onto [0, 2], then f(x...

    Text Solution

    |

  3. Let f(x)=sinx+ax+b.Then which of the following is/are true?

    Text Solution

    |

  4. The function f(x)=|x-1|/x^2 is

    Text Solution

    |

  5. Let f(x)=sin((pi)/x) and D={x:f(x)gt0), then D contains

    Text Solution

    |

  6. The function g, defined by g(x) = sinalpha + cosalpha - 1, alpha = sin...

    Text Solution

    |

  7. The graph of the equation y + abs(y) - x - absx = 0 is represented by ...

    Text Solution

    |

  8. if f(g(x)) is one-one function, then (1) g(x) must be one- one (2) f(x...

    Text Solution

    |

  9. Let functions f,g:RtoR defined by f(x)=3x-1+abs(2x-1),g(x)=1/5(3x+5-ab...

    Text Solution

    |

  10. If f: R to R, defined as f(x)=(sin([x]pi))/(x^(2)+x+1), where (x] is t...

    Text Solution

    |

  11. Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

    Text Solution

    |

  12. If f(x) = sinx + cos ax is a periodic function then a cannot be

    Text Solution

    |

  13. If [x] represents the greatest integer less than or equal to x, then w...

    Text Solution

    |

  14. If thetain[-(pi)/9,-(pi)/(36)] such that f(theta)=tan(theta+(5pi)/(18)...

    Text Solution

    |

  15. f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx, then f(x) is

    Text Solution

    |

  16. Let f be a real valued periodic function defined for all real umbers x...

    Text Solution

    |

  17. If f(x) is a polynomial of degree 4 with rational coefficients a...

    Text Solution

    |

  18. Let f(x) = ((x - gamma)(x - delta)) / ((x-alpha)(a-beta)) where, gamma...

    Text Solution

    |

  19. Let f(x) =x^(13)-2x^(12)+3x^(11)+…+13x+14 and alpha=cos(2pi)/15+sin(2p...

    Text Solution

    |

  20. Let y = 2cos(sin^(2)theta + sintheta + 2). If range of y is [a, b] and...

    Text Solution

    |