Home
Class 12
MATHS
If thetain[-(pi)/9,-(pi)/(36)] such that...

If `thetain[-(pi)/9,-(pi)/(36)]` such that `f(theta)=tan(theta+(5pi)/(18))+cos(theta+(5pi)/(18))-tan(theta+(7pi)/9)` have maximum and minimum values as `l_(1)` and `l_(2)` respectlvely, then

A

`l_(1)=11/(sqrt3)`

B

`l_(2)=(-3+2sqrt2)/2`

C

`l_(2)=(2sqrt2+1)/(sqrt2)`

D

`l_(1)=11/(2sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum and minimum values of the function \( f(\theta) = \tan\left(\theta + \frac{5\pi}{18}\right) + \cos\left(\theta + \frac{5\pi}{18}\right) - \tan\left(\theta + \frac{7\pi}{9}\right) \) over the interval \( \theta \in \left[-\frac{\pi}{9}, -\frac{\pi}{36}\right] \). ### Step 1: Rewrite the function We start by rewriting the function in a more manageable form. We can express \( f(\theta) \) as: \[ f(\theta) = \tan\left(\theta + \frac{5\pi}{18}\right) + \cos\left(\theta + \frac{5\pi}{18}\right) - \tan\left(\theta + \frac{7\pi}{9}\right) \] ### Step 2: Change of variable Let \( \alpha = \theta + \frac{7\pi}{9} \). Then, we can express \( \theta \) in terms of \( \alpha \): \[ \theta = \alpha - \frac{7\pi}{9} \] Now, we need to determine the new limits for \( \alpha \): - When \( \theta = -\frac{\pi}{9} \): \[ \alpha = -\frac{\pi}{9} + \frac{7\pi}{9} = \frac{6\pi}{9} = \frac{2\pi}{3} \] - When \( \theta = -\frac{\pi}{36} \): \[ \alpha = -\frac{\pi}{36} + \frac{7\pi}{9} = -\frac{\pi}{36} + \frac{28\pi}{36} = \frac{27\pi}{36} = \frac{3\pi}{4} \] Thus, the new interval for \( \alpha \) is \( \left[\frac{2\pi}{3}, \frac{3\pi}{4}\right] \). ### Step 3: Rewrite the function in terms of \( \alpha \) Now, substituting \( \theta \) in \( f(\theta) \): \[ f(\alpha) = \tan\left(\alpha - \frac{7\pi}{9} + \frac{5\pi}{18}\right) + \cos\left(\alpha - \frac{7\pi}{9} + \frac{5\pi}{18}\right) - \tan(\alpha) \] We simplify \( \tan\left(\alpha - \frac{7\pi}{9} + \frac{5\pi}{18}\right) \) and \( \cos\left(\alpha - \frac{7\pi}{9} + \frac{5\pi}{18}\right) \). ### Step 4: Find the derivative To find the maximum and minimum values, we need to compute the derivative \( f'(\alpha) \) and set it to zero: \[ f'(\alpha) = \sec^2\left(\alpha - \frac{7\pi}{9} + \frac{5\pi}{18}\right) + \sin\left(\alpha - \frac{7\pi}{9} + \frac{5\pi}{18}\right) - \sec^2(\alpha) \] ### Step 5: Solve for critical points Set \( f'(\alpha) = 0 \) and solve for \( \alpha \) within the interval \( \left[\frac{2\pi}{3}, \frac{3\pi}{4}\right] \). ### Step 6: Evaluate endpoints and critical points Evaluate \( f(\alpha) \) at the endpoints \( \alpha = \frac{2\pi}{3} \) and \( \alpha = \frac{3\pi}{4} \), and at any critical points found in the previous step. ### Step 7: Determine maximum and minimum values Compare the values obtained from the evaluations to determine the maximum value \( l_1 \) and the minimum value \( l_2 \). ### Final Result The maximum and minimum values \( l_1 \) and \( l_2 \) will be the respective values of \( f(\alpha) \) at the critical points and endpoints. ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise MATCH THE COLUMNS|6 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

tan theta tan((pi)/(3)+theta)tan((pi)/(3)-theta)=tan3 theta

tan theta+tan(theta+(pi)/(3))+tan(theta-(pi)/(3))=k tan36 then k is equal to

If theta in((pi)/(4),(pi)/(2)) and f(theta)=sec 2theta- tan 2theta , then f((pi)/(4)-theta)=

tan((pi)/(4)+theta)-tan((pi)/(4)-theta)=2tan2 theta

For theta in(0,(pi)/(2)), the maximum value of sin(theta+(pi)/(6))+cos(theta+(pi)/(6)) is attained at theta=

tan(pi/4+theta)+tan(pi/4-theta)=4

Prove that sec((3pi)/2-theta)sec(theta-(5pi)/2)+tan((5pi)/2+theta)tan(theta-(3pi)/2)=-1

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II
  1. let f: A to A, where A is a set of non-negative integers and satisfyin...

    Text Solution

    |

  2. Let f(x) be a linear function which maps [-1, 1] onto [0, 2], then f(x...

    Text Solution

    |

  3. Let f(x)=sinx+ax+b.Then which of the following is/are true?

    Text Solution

    |

  4. The function f(x)=|x-1|/x^2 is

    Text Solution

    |

  5. Let f(x)=sin((pi)/x) and D={x:f(x)gt0), then D contains

    Text Solution

    |

  6. The function g, defined by g(x) = sinalpha + cosalpha - 1, alpha = sin...

    Text Solution

    |

  7. The graph of the equation y + abs(y) - x - absx = 0 is represented by ...

    Text Solution

    |

  8. if f(g(x)) is one-one function, then (1) g(x) must be one- one (2) f(x...

    Text Solution

    |

  9. Let functions f,g:RtoR defined by f(x)=3x-1+abs(2x-1),g(x)=1/5(3x+5-ab...

    Text Solution

    |

  10. If f: R to R, defined as f(x)=(sin([x]pi))/(x^(2)+x+1), where (x] is t...

    Text Solution

    |

  11. Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

    Text Solution

    |

  12. If f(x) = sinx + cos ax is a periodic function then a cannot be

    Text Solution

    |

  13. If [x] represents the greatest integer less than or equal to x, then w...

    Text Solution

    |

  14. If thetain[-(pi)/9,-(pi)/(36)] such that f(theta)=tan(theta+(5pi)/(18)...

    Text Solution

    |

  15. f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx, then f(x) is

    Text Solution

    |

  16. Let f be a real valued periodic function defined for all real umbers x...

    Text Solution

    |

  17. If f(x) is a polynomial of degree 4 with rational coefficients a...

    Text Solution

    |

  18. Let f(x) = ((x - gamma)(x - delta)) / ((x-alpha)(a-beta)) where, gamma...

    Text Solution

    |

  19. Let f(x) =x^(13)-2x^(12)+3x^(11)+…+13x+14 and alpha=cos(2pi)/15+sin(2p...

    Text Solution

    |

  20. Let y = 2cos(sin^(2)theta + sintheta + 2). If range of y is [a, b] and...

    Text Solution

    |