Home
Class 12
MATHS
f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx, then...

`f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx`, then f(x) is

A

one-one.

B

onto

C

many-one

D

into

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin x + \cos x \) with the given domain \( \mathbb{N} \) (natural numbers) and co-domain \( [-\sqrt{2}, \sqrt{2}] \). ### Step 1: Rewrite the Function We can rewrite the function \( f(x) \) using the sine addition formula. \[ f(x) = \sin x + \cos x = \sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right) \] Using the sine addition formula \( \sin(a + b) = \sin a \cos b + \cos a \sin b \), we can express this as: \[ f(x) = \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \] ### Step 2: Determine the Range of \( f(x) \) The sine function oscillates between -1 and 1. Therefore, the maximum and minimum values of \( f(x) \) can be calculated as follows: - Maximum value: \[ \sqrt{2} \cdot 1 = \sqrt{2} \] - Minimum value: \[ \sqrt{2} \cdot (-1) = -\sqrt{2} \] Thus, the range of \( f(x) \) is \( [-\sqrt{2}, \sqrt{2}] \). ### Step 3: Analyze the Domain The domain of \( f(x) \) is restricted to natural numbers \( \mathbb{N} \). Since \( x \) can only take values like 1, 2, 3, etc., we need to evaluate \( f(x) \) at these points. ### Step 4: Check Values of \( f(x) \) at Natural Numbers Let's calculate \( f(x) \) for a few natural numbers: - \( f(1) = \sin(1) + \cos(1) \) - \( f(2) = \sin(2) + \cos(2) \) - \( f(3) = \sin(3) + \cos(3) \) These values will lie within the range \( [-\sqrt{2}, \sqrt{2}] \). ### Step 5: Determine if the Function is One-One To check if \( f(x) \) is one-one, we need to see if \( f(x_1) = f(x_2) \) implies \( x_1 = x_2 \). Assume \( f(x_1) = f(x_2) \): \[ \sqrt{2} \sin \left( x_1 + \frac{\pi}{4} \right) = \sqrt{2} \sin \left( x_2 + \frac{\pi}{4} \right) \] This implies: \[ \sin \left( x_1 + \frac{\pi}{4} \right) = \sin \left( x_2 + \frac{\pi}{4} \right) \] The sine function is periodic, but since \( x_1 \) and \( x_2 \) are restricted to natural numbers, the only solution is \( x_1 = x_2 \). Therefore, \( f(x) \) is one-one. ### Conclusion The function \( f(x) = \sin x + \cos x \) has a range of \( [-\sqrt{2}, \sqrt{2}] \) and is one-one when defined over the natural numbers.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise MATCH THE COLUMNS|6 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)) is

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)

f(x)=sinx+cosx+3 . find the range of f(x).

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II
  1. let f: A to A, where A is a set of non-negative integers and satisfyin...

    Text Solution

    |

  2. Let f(x) be a linear function which maps [-1, 1] onto [0, 2], then f(x...

    Text Solution

    |

  3. Let f(x)=sinx+ax+b.Then which of the following is/are true?

    Text Solution

    |

  4. The function f(x)=|x-1|/x^2 is

    Text Solution

    |

  5. Let f(x)=sin((pi)/x) and D={x:f(x)gt0), then D contains

    Text Solution

    |

  6. The function g, defined by g(x) = sinalpha + cosalpha - 1, alpha = sin...

    Text Solution

    |

  7. The graph of the equation y + abs(y) - x - absx = 0 is represented by ...

    Text Solution

    |

  8. if f(g(x)) is one-one function, then (1) g(x) must be one- one (2) f(x...

    Text Solution

    |

  9. Let functions f,g:RtoR defined by f(x)=3x-1+abs(2x-1),g(x)=1/5(3x+5-ab...

    Text Solution

    |

  10. If f: R to R, defined as f(x)=(sin([x]pi))/(x^(2)+x+1), where (x] is t...

    Text Solution

    |

  11. Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

    Text Solution

    |

  12. If f(x) = sinx + cos ax is a periodic function then a cannot be

    Text Solution

    |

  13. If [x] represents the greatest integer less than or equal to x, then w...

    Text Solution

    |

  14. If thetain[-(pi)/9,-(pi)/(36)] such that f(theta)=tan(theta+(5pi)/(18)...

    Text Solution

    |

  15. f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx, then f(x) is

    Text Solution

    |

  16. Let f be a real valued periodic function defined for all real umbers x...

    Text Solution

    |

  17. If f(x) is a polynomial of degree 4 with rational coefficients a...

    Text Solution

    |

  18. Let f(x) = ((x - gamma)(x - delta)) / ((x-alpha)(a-beta)) where, gamma...

    Text Solution

    |

  19. Let f(x) =x^(13)-2x^(12)+3x^(11)+…+13x+14 and alpha=cos(2pi)/15+sin(2p...

    Text Solution

    |

  20. Let y = 2cos(sin^(2)theta + sintheta + 2). If range of y is [a, b] and...

    Text Solution

    |