Home
Class 12
MATHS
Find the centre, the length of axes, the...

Find the centre, the length of axes, the eccentricity and the foci of the ellipse `12x^(2)+4y^(2)+24x-16y+25=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the center, length of axes, eccentricity, and foci of the ellipse given by the equation \(12x^2 + 4y^2 + 24x - 16y + 25 = 0\), we will follow these steps: ### Step 1: Rearranging the Equation First, we need to rearrange the equation into the standard form of an ellipse. We start with: \[ 12x^2 + 4y^2 + 24x - 16y + 25 = 0 \] We can rearrange it as: \[ 12x^2 + 24x + 4y^2 - 16y + 25 = 0 \] ### Step 2: Completing the Square for \(x\) and \(y\) Next, we will complete the square for the \(x\) and \(y\) terms. **For \(x\):** \[ 12(x^2 + 2x) = 12((x+1)^2 - 1) = 12(x+1)^2 - 12 \] **For \(y\):** \[ 4(y^2 - 4y) = 4((y-2)^2 - 4) = 4(y-2)^2 - 16 \] Now substituting back into the equation: \[ 12((x+1)^2 - 1) + 4((y-2)^2 - 4) + 25 = 0 \] This simplifies to: \[ 12(x+1)^2 - 12 + 4(y-2)^2 - 16 + 25 = 0 \] \[ 12(x+1)^2 + 4(y-2)^2 - 3 = 0 \] \[ 12(x+1)^2 + 4(y-2)^2 = 3 \] ### Step 3: Dividing by 3 To get the standard form, divide the entire equation by 3: \[ \frac{12(x+1)^2}{3} + \frac{4(y-2)^2}{3} = 1 \] This simplifies to: \[ \frac{4(x+1)^2}{1} + \frac{(y-2)^2}{\frac{3}{4}} = 1 \] ### Step 4: Identifying Parameters From the equation \(\frac{(x+1)^2}{\frac{1}{4}} + \frac{(y-2)^2}{\frac{3}{4}} = 1\), we can identify: - Center: \((-1, 2)\) - \(a^2 = \frac{1}{4} \Rightarrow a = \frac{1}{2}\) - \(b^2 = \frac{3}{4} \Rightarrow b = \frac{\sqrt{3}}{2}\) ### Step 5: Length of Axes - Length of the major axis (along the \(y\)-axis): \(2b = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}\) - Length of the minor axis (along the \(x\)-axis): \(2a = 2 \cdot \frac{1}{2} = 1\) ### Step 6: Eccentricity The eccentricity \(e\) is given by: \[ e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{\frac{1}{4}}{\frac{3}{4}}} = \sqrt{1 - \frac{1}{3}} = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] ### Step 7: Foci The foci are located at \((h, k \pm c)\) where \(c = \sqrt{b^2 - a^2}\): \[ c = \sqrt{\frac{3}{4} - \frac{1}{4}} = \sqrt{\frac{2}{4}} = \frac{1}{\sqrt{2}} \] Thus, the foci are: \[ (-1, 2 \pm \frac{1}{\sqrt{2}}) = \left(-1, 2 + \frac{1}{\sqrt{2}}\right) \text{ and } \left(-1, 2 - \frac{1}{\sqrt{2}}\right) \] ### Summary of Results - Center: \((-1, 2)\) - Length of Major Axis: \(\sqrt{3}\) - Length of Minor Axis: \(1\) - Eccentricity: \(\frac{\sqrt{6}}{3}\) - Foci: \(\left(-1, 2 + \frac{1}{\sqrt{2}}\right)\) and \(\left(-1, 2 - \frac{1}{\sqrt{2}}\right)\)
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    FIITJEE|Exercise EXERCISE 2|9 Videos
  • ELLIPSE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I)|15 Videos
  • ELLIPSE

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|18 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • FUNCTION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Find the centre the lengths of the axes, eccentricity,foci of the following ellipse: x^(2)+4y^(2)-2x=0

For the ellipse 12x^(2)+4y+24x-16y+25=0

Find the center,foci,the length of the axes, and the eccentricity of the ellipse 2x^(2)+3y^(2)-4x-12y+13=0

Find the centre the lengths of the axes, eccentricity,foci of the following ellipse: 4x^(2)+16y^(2)-24x-32y-2=0

Find the centre the lengths of the axes, eccentricity,foci of the following ellipse: 3x^(2)+4y^(2)-12x-8y+3=0

Find the centre the lengths of the axes, eccentricity,foci of the following ellipse: x^(2)+4y^(2)-4x+24y+31=0

Find the centre the lengths of the axes, eccentricity,foci of the following ellipse: x^(2)+2y^(2)-2x+12y+10=0

Find the centre, the length of the axes and the accentricity of the ellipse : x^2 + 3y^2 - 4x - 12y + 13=0

Find the centre the lengths of the axes, eccentricity,foci of the following ellipse: 4x^(2)+y^(2)-8x+2y+1=0

Foci of the ellipse 16x^(2)+25y^(2)=400 are