Home
Class 12
MATHS
Find the latus rectum, eccentricity and ...

Find the latus rectum, eccentricity and foci of the curve `4x^(2)+9y^(2)-8x-36y+4=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(4x^2 + 9y^2 - 8x - 36y + 4 = 0\) and find the latus rectum, eccentricity, and foci of the ellipse, we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ 4x^2 + 9y^2 - 8x - 36y + 4 = 0 \] We rearrange it to group the \(x\) and \(y\) terms: \[ 4x^2 - 8x + 9y^2 - 36y + 4 = 0 \] ### Step 2: Completing the Square Next, we complete the square for the \(x\) and \(y\) terms. **For \(x\):** \[ 4(x^2 - 2x) \quad \text{(factor out the 4)} \] To complete the square: \[ x^2 - 2x = (x - 1)^2 - 1 \] Thus, \[ 4((x - 1)^2 - 1) = 4(x - 1)^2 - 4 \] **For \(y\):** \[ 9(y^2 - 4y) \quad \text{(factor out the 9)} \] To complete the square: \[ y^2 - 4y = (y - 2)^2 - 4 \] Thus, \[ 9((y - 2)^2 - 4) = 9(y - 2)^2 - 36 \] ### Step 3: Substitute Back into the Equation Substituting back into the equation gives: \[ 4(x - 1)^2 - 4 + 9(y - 2)^2 - 36 + 4 = 0 \] Simplifying this: \[ 4(x - 1)^2 + 9(y - 2)^2 - 36 = 0 \] \[ 4(x - 1)^2 + 9(y - 2)^2 = 36 \] ### Step 4: Divide by 36 Now, we divide the entire equation by 36 to get it into standard form: \[ \frac{(x - 1)^2}{9} + \frac{(y - 2)^2}{4} = 1 \] ### Step 5: Identify Parameters From the standard form \(\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\), we identify: - \(h = 1\), \(k = 2\) - \(a^2 = 9 \Rightarrow a = 3\) - \(b^2 = 4 \Rightarrow b = 2\) ### Step 6: Find the Eccentricity The eccentricity \(e\) of the ellipse is given by: \[ e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### Step 7: Find the Foci The foci of the ellipse are located at: \[ (h \pm ae, k) = (1 \pm 3e, 2) \] Calculating the foci: \[ F_1 = \left(1 + 3 \cdot \frac{\sqrt{5}}{3}, 2\right) = (1 + \sqrt{5}, 2) \] \[ F_2 = \left(1 - 3 \cdot \frac{\sqrt{5}}{3}, 2\right) = (1 - \sqrt{5}, 2) \] ### Step 8: Find the Latus Rectum The latus rectum \(L\) of the ellipse is given by: \[ L = \frac{2b^2}{a} = \frac{2 \cdot 4}{3} = \frac{8}{3} \] ### Final Results - **Latus Rectum**: \(\frac{8}{3}\) - **Eccentricity**: \(\frac{\sqrt{5}}{3}\) - **Foci**: \((1 + \sqrt{5}, 2)\) and \((1 - \sqrt{5}, 2)\)
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    FIITJEE|Exercise EXERCISE 2|9 Videos
  • ELLIPSE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I)|15 Videos
  • ELLIPSE

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|18 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • FUNCTION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Find the latus rectum, the eccentricity and coordinates of the foci of the ellipse 9x^2 + 5y^2 + 30y=0 .

Find the latus rectum, the eccentricity and coordinates of the foci of the ellipse 9x^2 + 5y^2 + 30y=0 .

Find the centre,eccentricity,foci and directrices of the hyperbola: 16x^(2)-9y^(2)+32x+36y-164=0

Find the latus rectum, eccentricity, coordinates of the foci and the length of axes of that ellipses : 4x^2 + 9y^2 - 8x - 36y + 4 =0

Find the latus rectum, eccentricity, coordinates of the foci and the length of axes of the ellipse 4x^2 + 9y^2 - 8x - 36y+4=0 .

Find the latus rectum, eccentricity, coordinates of the foci and the length of axes of that ellipses : 9x^2 + 5y^2 - 30y=0