Home
Class 12
MATHS
If the maximum distance of any point on ...

If the maximum distance of any point on the ellipse `x^2+2y^2+2x y=1` from its center is `r ,` then `r` is equal to `3+sqrt(3)` (b) `2+sqrt(2)` `(sqrt(2))/(sqrt(3-sqrt(5)))` (d) `sqrt(2-sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(sqrt(2))/(sqrt(3)-sqrt(5))`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-II)|14 Videos
  • ELLIPSE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)|47 Videos
  • ELLIPSE

    FIITJEE|Exercise EXERCISE 2|9 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • FUNCTION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

(2)/(sqrt(x))+(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1

The distance of a point on ellipse (x^(2))/(6) + (y^(2))/(2) = 1 from its centre is sqrt(2) . The eccentric is sqrt(2) angle of the point will be

(1)/(sqrt(9)-sqrt(8)) is equal to: 3+2sqrt(2)(b)(1)/(3+2sqrt(2)) (c) 3-2sqrt(2)(d)(3)/(2)-sqrt(2)

If x=5+2sqrt(6), then sqrt(x)-(1)/(sqrt(x)) is a.2sqrt(2)b2sqrt(3)c*sqrt(3)+sqrt(2)d*sqrt(3)-sqrt(2)

If sqrt(3)x-sqrt(2y)=sqrt(3);sqrt(5)x+sqrt(3)y=sqrt(2) then x and y are

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))"and"y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then x^2+xy+y^2=

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

If x=5+2sqrt(6), then (x-1)/(sqrt(x)) is equal to a.sqrt(2) b.sqrt(3)c.2sqrt(2)d.2sqrt(3)