Home
Class 12
MATHS
The eccentricity of the conic x=3((1-t^...

The eccentricity of the conic `x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2))` is

A

`(2)/(3)`

B

`(2sqrt(2))/(3)`

C

`(3)/(2)`

D

`(3)/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity of the conic given by the parametric equations \( x = 3 \frac{1 - t^2}{1 + t^2} \) and \( y = \frac{2t}{1 + t^2} \), we can follow these steps: ### Step 1: Identify the Conic Section The given equations are in parametric form. We can recognize that they resemble the parametric equations for an ellipse. ### Step 2: Convert Parametric Equations to Cartesian Form We can express \( x \) and \( y \) in terms of \( t \): 1. From \( x = 3 \frac{1 - t^2}{1 + t^2} \), we can rearrange to find \( t^2 \): \[ x(1 + t^2) = 3(1 - t^2) \implies xt^2 + x = 3 - 3t^2 \implies (x + 3)t^2 = 3 - x \implies t^2 = \frac{3 - x}{x + 3} \] 2. From \( y = \frac{2t}{1 + t^2} \), we can express \( t \): \[ y(1 + t^2) = 2t \implies yt^2 - 2t + y = 0 \] This is a quadratic in \( t \). Using the quadratic formula, we can solve for \( t \): \[ t = \frac{2 \pm \sqrt{(2)^2 - 4y(y)}}{2y} = \frac{2 \pm \sqrt{4 - 4y^2}}{2y} = \frac{1 \pm \sqrt{1 - y^2}}{y} \] ### Step 3: Substitute \( t^2 \) into \( y \) Using the expression for \( t^2 \) in terms of \( x \), we can substitute into the equation for \( y \): \[ y^2 = \left(\frac{2t}{1 + t^2}\right)^2 = \frac{4t^2}{(1 + t^2)^2} \] Substitute \( t^2 = \frac{3 - x}{x + 3} \): \[ y^2 = \frac{4 \cdot \frac{3 - x}{x + 3}}{\left(1 + \frac{3 - x}{x + 3}\right)^2} \] ### Step 4: Identify the Standard Form of the Ellipse After simplification, we can express the conic in the standard form of an ellipse: \[ \frac{x^2}{9} + \frac{y^2}{1} = 1 \] This indicates that the semi-major axis \( a = 3 \) and the semi-minor axis \( b = 1 \). ### Step 5: Calculate the Eccentricity The eccentricity \( e \) of an ellipse is given by the formula: \[ e = \sqrt{1 - \frac{b^2}{a^2}} \] Substituting \( a = 3 \) and \( b = 1 \): \[ e = \sqrt{1 - \frac{1^2}{3^2}} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \] ### Final Answer The eccentricity of the conic is \( \frac{2\sqrt{2}}{3} \). ---
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-II)|20 Videos
  • ELLIPSE

    FIITJEE|Exercise COMPREHENSIONS I|3 Videos
  • ELLIPSE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-II)|14 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • FUNCTION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

Find (dy)/(dx), when x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))

sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

The locus of the point x=(t^(2)-1)/(t^(2)+1),y=(2t)/(t^(2)+1)

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

FIITJEE-ELLIPSE-ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)
  1. The sides of the greatest rectangle that can be inscribed in the ellip...

    Text Solution

    |

  2. The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+...

    Text Solution

    |

  3. The eccentricity of ellipse ax^2 + by^2 + 2gx + 2fy + c = 0 if its axi...

    Text Solution

    |

  4. Consider an ellipse (x^(2))/(13)+(y^(2))/(4)=1 and a variaote point P(...

    Text Solution

    |

  5. If P=(x , y),F1=(3,0),F2=(-3,0), and 16 x^2+25 y^2=400 , then P F1+P F...

    Text Solution

    |

  6. Let P be a variable point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 wit...

    Text Solution

    |

  7. If the chords of contact of tangents from two poinst (x1, y1) and (...

    Text Solution

    |

  8. If the normals at an end of a latus rectum of an ellipse passes throug...

    Text Solution

    |

  9. An ellipse having coordinate axes as its axes and semi major and semi ...

    Text Solution

    |

  10. Let E be the ellipse (x^(2))/(9)+(y^(2))/(4)=1 and C be the circle x^(...

    Text Solution

    |

  11. A tangent is drawn to the ellipse (x^(2))/(27)+y^(2)=1 at the point (3...

    Text Solution

    |

  12. The area of the quadrilateral formed by the tangents at the endpoint o...

    Text Solution

    |

  13. P is any point on the ellipise (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and S...

    Text Solution

    |

  14. The curve with parametric equations x=1+4 cos theta, y=2+3 sin theta ...

    Text Solution

    |

  15. Find the eccentricity of an ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 whose la...

    Text Solution

    |

  16. A perfectely rough plane is inclined at an angle alpha to the horizont...

    Text Solution

    |

  17. The locus of the point of intersection of the tangents drawn to the el...

    Text Solution

    |

  18. An ellipse of major and minor axes of length sqrt(3) and 1 respectivel...

    Text Solution

    |

  19. A tangent to the ellipse 4x^2 +9y^2 =36 is cut by the tangent at the e...

    Text Solution

    |

  20. Angle between tangents drawn from any point on the circle x^2 +y^2 = (...

    Text Solution

    |