Home
Class 12
MATHS
The value of theta which the sum of inte...

The value of `theta` which the sum of intercepts co-ordinates axes cut by tangent at point `(3 sqrt(3) cos theta, sin theta)` to ellipse `x^(2)+27y^(2)=27` is minimum is/are

A

`pi//6`

B

`7pi//6`

C

`pi//3`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \theta \) for which the sum of the intercepts on the coordinate axes cut by the tangent to the ellipse \( x^2 + 27y^2 = 27 \) at the point \( (3\sqrt{3} \cos \theta, \sin \theta) \) is minimized. ### Step 1: Verify the point lies on the ellipse The point \( (3\sqrt{3} \cos \theta, \sin \theta) \) must satisfy the equation of the ellipse. \[ x^2 + 27y^2 = 27 \] Substituting \( x = 3\sqrt{3} \cos \theta \) and \( y = \sin \theta \): \[ (3\sqrt{3} \cos \theta)^2 + 27(\sin \theta)^2 = 27 \] Calculating the left-hand side: \[ 27 \cos^2 \theta + 27 \sin^2 \theta = 27(\cos^2 \theta + \sin^2 \theta) = 27 \] This confirms that the point lies on the ellipse. ### Step 2: Find the equation of the tangent line The equation of the tangent to the ellipse at the point \( (x_1, y_1) = (3\sqrt{3} \cos \theta, \sin \theta) \) is given by: \[ \frac{xx_1}{27} + \frac{yy_1}{1} = 1 \] Substituting \( x_1 \) and \( y_1 \): \[ \frac{xx_1}{27} + yy_1 = 1 \implies \frac{x(3\sqrt{3} \cos \theta)}{27} + y(\sin \theta) = 1 \] ### Step 3: Find the x-intercept and y-intercept To find the x-intercept (\( \alpha \)), set \( y = 0 \): \[ \frac{x(3\sqrt{3} \cos \theta)}{27} = 1 \implies x = \frac{27}{3\sqrt{3} \cos \theta} = \frac{9}{\sqrt{3} \cos \theta} = 3\sqrt{3} \sec \theta \] Thus, \( \alpha = 3\sqrt{3} \sec \theta \). To find the y-intercept (\( \beta \)), set \( x = 0 \): \[ y(\sin \theta) = 1 \implies y = \frac{1}{\sin \theta} \] Thus, \( \beta = \frac{1}{\sin \theta} \). ### Step 4: Sum of intercepts The sum of the intercepts is: \[ S = \alpha + \beta = 3\sqrt{3} \sec \theta + \frac{1}{\sin \theta} \] ### Step 5: Minimize the sum \( S \) To minimize \( S \), we differentiate with respect to \( \theta \): \[ \frac{dS}{d\theta} = 3\sqrt{3} \sec \theta \tan \theta - \frac{\cos \theta}{\sin^2 \theta} \] Setting the derivative to zero: \[ 3\sqrt{3} \sec \theta \tan \theta - \frac{\cos \theta}{\sin^2 \theta} = 0 \] This simplifies to: \[ 3\sqrt{3} \tan \theta = \frac{\cos \theta}{\sin^2 \theta} \] ### Step 6: Solve for \( \theta \) Rearranging gives: \[ 3\sqrt{3} \sin^2 \theta \tan \theta = \cos \theta \] Using \( \tan \theta = \frac{\sin \theta}{\cos \theta} \): \[ 3\sqrt{3} \sin^3 \theta = \cos^2 \theta \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ 3\sqrt{3} \sin^3 \theta = 1 - \sin^2 \theta \] Let \( x = \sin \theta \): \[ 3\sqrt{3} x^3 + x^2 - 1 = 0 \] ### Step 7: Finding roots Using numerical or graphical methods, we can find the roots of this cubic equation. The values of \( \theta \) corresponding to the roots will give us the angles where the sum of intercepts is minimized. ### Final Answer The values of \( \theta \) that minimize the sum of intercepts are: \[ \theta = \frac{\pi}{6}, \frac{7\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    FIITJEE|Exercise COMPREHENSIONS I|3 Videos
  • ELLIPSE

    FIITJEE|Exercise COMPREHENSIONS II|3 Videos
  • ELLIPSE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)|47 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • FUNCTION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The value of theta for which sqrt3 cos theta-sin theta=1 is :

The maximum value of the sum of the intercepts made by any tangent to the curve (a sin^(2)theta, 2a sin theta) with the axes is

Solve sqrt(3)cos theta-3sin theta=4sin2 theta cos3 theta

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If x = 3 sin theta + 4 cos theta and y = 3 cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

If x = 3sin theta + 4cos theta and y = 3cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

The value of (sin theta - 2 sin^3 theta)/(2 cos^3 theta-cos theta) is

The value of (sin^3 theta + cos^3 theta)/(sin theta+ costheta)+((cos^3 theta - sin^3 theta))/(cos theta - sin theta) is

FIITJEE-ELLIPSE-ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-II)
  1. Foci of ellipse ((x-1)^(2))/(4)+((y-2)^(2))/(9)=1 is/are

    Text Solution

    |

  2. The point P on the ellipse 4x^2+9y^2=36 is such that the are of the P...

    Text Solution

    |

  3. Let F1,F2 be two focii of the ellipse and PT and PN be the tangent and...

    Text Solution

    |

  4. If the normal at any point on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(...

    Text Solution

    |

  5. The maximum and minimum values of p^(2)+q^(2)-14q-6q+57 if p^(2)+4q^(2...

    Text Solution

    |

  6. A set of lines x+y-2+lambda(1)(2x+y-3)=0 represents incident rays on e...

    Text Solution

    |

  7. If the tangent to the ellipse x^2 +4y^2=16 at the point 0 sanormal to ...

    Text Solution

    |

  8. If a tangent of slope1/3 of the ellipse (x^2)/a^2+y^2/b^2=1(a > b) is ...

    Text Solution

    |

  9. if the tangent at the point (4 cos phi , (16)/(sqrt(11) )sin phi ...

    Text Solution

    |

  10. If the chord, joining two points whose eccentric angles are alpha and ...

    Text Solution

    |

  11. A chord of negative slope from P(sqrt(264),0) is drawn to ellipse x^(2...

    Text Solution

    |

  12. Which of the following lines touch the ellipse 2x^(2)+3y^(2)=1?

    Text Solution

    |

  13. The value of theta which the sum of intercepts co-ordinates axes cut b...

    Text Solution

    |

  14. If latus recturn of the ellipse x^2 tan^2 alpha+y^2 sec^2 alpha= 1 is ...

    Text Solution

    |

  15. Locus of the point of intersection of two perpendicular tangents to an...

    Text Solution

    |

  16. The tangent and normal to the ellipse x^(2)+4y^(2)=4 at a point P(thet...

    Text Solution

    |

  17. Find the co-ordinates of all the points P on the ellipse, x^2/a^2+y^2/...

    Text Solution

    |

  18. The points where the normal to the ellipse x^(2)+3y^(2)=37 is parallel...

    Text Solution

    |

  19. The ecentric angle of the points on the ellipse (x^(2))/(6)+(y^(2))/(2...

    Text Solution

    |

  20. On the ellipse 4x^(2)+9y^(2)=1, the points at which the tangent are pa...

    Text Solution

    |